精英家教网 > 高中数学 > 题目详情
已知函数f1(x)=3|x-p1|,f2(x)=2·3|x-p2|(x∈R,p1,p2为常数),函数f(x)定义为:对每个给定的实数x,
(Ⅰ)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);
(Ⅱ)设a,b是两个实数,满足a<b,且p1,p2∈(a,b).若f(a)=f(b),求证:函数f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n-m)。

解:(Ⅰ)由f(x)的定义可知,f(x)=f1(x)(对所有实数x)等价于f1(x)≤f2(x)(对所有实数x),
这又等价于3|x-p1|≤2·3|x-p2|,即3|x-p1|-|x-p2|≤2对所有实数x均成立,(*)
易知函数|x-p1|-|x-p2|(x∈R)的最大值为|p2-p1| ,
故(*)等价于3|p2-p1|≤2,即|p2-p1|≤log32,这就是所求的充分必要条件.
(Ⅱ)分两种情形讨论.
(ⅰ)当|p1-p2|≤log32时,由(Ⅰ)知f(x)=f1(x)(对所有实数x∈[a,b]),
则由f(a)=f(b)及a<p1<b易知
再由的单调性可知,
f(x)在区间[a,b]上的单调增区间的长度为,如下图,

(ⅱ)当|p1-p2|>log32时,不妨设p1<p2,则p2-p1>log32,
于是,当x≤p1时,有f1(x)=3p1-x<3p2-x<f2(x),从而f(x)=f1(x);
当x≥p2时,f1(x)=3x-p1=3p2-p1·3x-p2>3log32·3x-p2=f2(x),从而f(x)=f2(x);
当p1<x<p2时,f1(x)=3x-p1及f2(x)=2·3p2-x
由方程3x0-p1=2·3p2-x0
解得f1(x)与f2(x)图象交点的横坐标为,①
显然
这表明x0在p1与p2之间,
由①易知
综上可知,在区间[a,b]上, 如下图所示,

故由函数f1(x)与f2(x)的单调性可知,f(x)在区间[a,b]上的单调增区间的长度之和为(x0-p1)+(b-p2),由于f(a)=f(b),即3p1-a=2·3b-p2,得 p1+p2=a+b+log32,②
故由①、②得
综合(ⅰ)、(ⅱ)可知,f(x)在区间[a,b]上的单调增区间的长度之和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称为g(x)为f1(x),f2(x)的“活动函数”.
已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
f2(x)=
1
2
x2+2ax

①若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围;
②当a=
2
3
时,求证:在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx,f2(x)=
1
2
x2
+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)已知函数f1(x)=axf2(x)=xaf3(x)=logax(其中a>0且a≠1),当x≥0且y≥0时,在同一坐标系中画出其中两个函数的大致图象,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f1(x)=e|x-a|f2(x)=ebx
(I)若f(x)=f1(x)+f2(x)-bf2(-x),是否存在a,b∈R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数g(x)=f1(x)+f2(x)在R上的单调区间;
(III )对于给定的实数?x0∈[0,1],对?x∈[0,1],有|f1(x)-f2(x0)|<1成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=x+
4
x
(x≠0),f2(x)=cosx+
4
cosx
(0<x<
π
2
)
,f3(x)=
8x
x2+1
(x>0),f4(x)=
9
x+2
+x(x≥-2)
,其中以4为最小值的函数个数是(  )

查看答案和解析>>

同步练习册答案