【题目】如图,在平面直角坐标系
中,已知点
到抛物线
焦点的距离为
.
(1)求
的值;
(2) 设
是抛物线上异于
的两个不同点,过
作
轴的垂线,与直线
交于点
,过
作
轴的垂线,与直线
交于点
,过
作
轴的垂线,与直线
分别交于点
.
求证:①直线
的斜率为定值;
②
是线段
的中点.
![]()
科目:高中数学 来源: 题型:
【题目】某房产中介公司2017年9月1日正式开业,现对其每个月的二手房成交量进行统计,
表示开业第
个月的二手房成交量,得到统计表格如下:
![]()
(1)统计中常用相关系数
来衡量两个变量之间线性关系的强弱.统计学认为,对于变量
,如果
,那么相关性很强;如果
,那么相关性一般;如果
,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合
与
的关系.计算
的相关系数
,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
(计算结果精确到0.01),并预测该房产中介公司2018年6月份的二手房成交量(计算结果四舍五入取整数).
(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为
,获得“二等奖”的概率为
,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额
(千元)的分布列及数学期望.
参考数据:
,
,
,
,
.
参考公式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
的定义域为
,满足对任意
,有
.则称
为“
形函数”;若函数
定义域为
,
恒大于0,且对任意
,恒有
,则称
为“对数
形函数”.
(1)当
时,判断
是否是“
形函数”,并说明理由;
(2)当
时,判断
是否是“对数
形函数”,并说明理由;
(3)若函数
是
形函数,且满足对任意
都有
,问
是否是“对数
形函数”?请加以证明,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从集合
的所有非空子集中,等可能地取出
个.
(1)若
,求所取子集的元素既有奇数又有偶数的概率;
(2)若
,记所取子集的元素个数之差为
,求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,某市为响应国家号召,大力推行全民健身运动,加强对市内各公共体育运动设施的维护,几年来,经统计,运动设施的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系。
![]()
(1)求出y关于x的回归直线方程少![]()
(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过100万元?
参考公式:对于一组数据(x1,yl),(x2,y2),…,(xn,Yn),其回归方程
的斜率和截距的最小二乘估计分别为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在区间
上的最大值为2.
(1)求函数
的解析式,并求它的对称中心的坐标;
(2)先将函数
保持横坐标不变,纵坐标变为原来的
(
)倍,再将图象向左平移
(
)个单位,得到的函数
为偶函数.若对任意的
,总存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为
,过点
作垂直于
轴的直线与抛物线交于
,
两点,且以线段
为直径的圆过点
.
(1)求抛物线
的方程;
(2)若直线
与抛物线
交于
,
两点,点
为曲线
:
上的动点,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的相邻两对称轴间的距离为
,若将
的图像先向左平移
个单位,再向下平移
个单位,所得的函数
为奇函数.
(1)求
的解析式;
(2)若关于
的方程
在区间
上有两个不等实根,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com