精英家教网 > 高中数学 > 题目详情

【题目】(题文)(题文)已知椭圆的左右顶点分别为,右焦点的坐标为,点坐标为,且直线轴,过点作直线与椭圆交于两点(在第一象限且点在点的上方),直线交于点,连接.

(1)求椭圆的方程;

(2)设直线的斜率为,直线的斜率为,问:的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.

【答案】(1)(2).

【解析】分析:(1)由题意可知,则,即可求得椭圆方程.

(2)由题意设,设直线的方程为,代入椭圆方程,写出韦达定理关系式,再根据三点共线,得到,然后计算的值为定值.

详解:(1)设椭圆方程为,由题意可知:,所以

所以椭圆的方程为

(2)是定值,定值为.

,因为直线过点,设直线的方程为:

联立

所以

因为点在直线上,所以可设

在直线上,所以:

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以三角形边为边向形外作正三角形,则三线共点,该点称为的正等角中心.当的每个内角都小于120时,正等角中心点P满足以下性质:

1;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得的最小值为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线焦点的直线与抛物线交于两点,与圆交于两点,若有三条直线满足,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的偶函数,且当x≥0时,fx)=x22x

1)求f0)及ff1))的值;

2)求函数fx)的解析式;

3)若关于x的方程fx)﹣m0有四个不同的实数解,求实数m的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,且sin cos .

(1)cos α的值;

(2)sin(αβ)=- β,求cos β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面的中点,的中点,点在线段上,.

(Ⅰ)求证:平面

(Ⅱ)若,求证:平面

(Ⅲ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面的中点

(1)求证:平面

(2)求证:平面平面

(3)若与平面所成角为的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,侧面为正三角形,侧面底面分别为棱的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)在棱上是否存在一点,使得平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案