精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

【答案】(1)(2)

【解析】

(1)利用椭圆的离心率以及已知条件转化求解ab即可得到椭圆方程.

(2)Aa,0),F(﹣c,0),求出线段AF的中垂线方程为:.推出,求出线段AB的中垂线方程,推出bc,然后求解椭圆的离心率即可.

1)因为椭圆 的离心率为

所以,则

因为线段中点的横坐标为

所以

所以,则

所以椭圆的标准方程为

2)因为

所以线段的中垂线方程为:

又因为△外接圆的圆心C在直线上,

所以.因为

所以线段的中垂线方程为:

C在线段的中垂线上,得

整理得,

因为,所以

所以椭圆的离心率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1),等腰梯形分别是的两个三等分点,若把等腰梯形沿虚线折起,使得点和点重合,记为点 如图(2).

1)求证:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是椭圆上一点,MN分别是两圆(x+4)2y2=1(x-4)2y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面为矩形,侧面为梯形,.

1)求证:

2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.数列满足.

1)若,且,求正整数的值;

2)若数列均是等差数列,求的取值范围;

3)若数列是等比数列,公比为,且,是否存在正整数,使成等差数列,若存在,求出一个的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以分组的频率分布直方图如图所示.

根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;

用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布

估计该市居民月平均用电量介于度之间的概率;

利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.

2)线性回归直线必过点

3)对于分类变量AB的随机变量越大说明AB有关系的可信度越大.

4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数的值越大,说明拟合的效果越好.

5)根据最小二乘法由一组样本点,求得的回归方程是,对所有的解释变量,的值一定与有误差.

以上命题正确的序号为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥中,,点上,且

1)证明:

2)在棱上是否存在一点,使三棱锥是正三棱锥?证明你的结论.

3)求以为棱,为面的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数时取得极值,求实数的值;

(Ⅱ)当时,求零点的个数.

查看答案和解析>>

同步练习册答案