【题目】已知下列命题:
①函数
在
上单调递减,在
上单调递增;
②若函数
在
上有两个零点,则
的取值范围是
;
③当
时,函数
的最大值为0;
④函数
在
上单调递减;
上述命题正确的是_________(填序号).
科目:高中数学 来源: 题型:
【题目】中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马
中,底面ABCD是矩形.
平面
,
,
,以
的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).
![]()
(1)证明:
平面
,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图所示),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为
.若“牟合方盖”的体积为
,则正方体的外接球的表面积为__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高二年级开设选修课,选课结束后,有6名同学要求改选历史,现历史选修课开有三个班,若每个班至多可再接收3名同学,那么不同的接收方案共有( )
A.150种B.360种C.510种D.512种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①函数
在
上单调递减,在
上单调递增;
②若函数
在
上有两个零点,则
的取值范围是
;
③当
时,函数
的最大值为0;
④函数
在
上单调递减;
上述命题正确的是_________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为![]()
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点.求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,已知平面
平面
是边长为2的等边三角形,点
是
的中点,底面
是矩形,
,
为
上一点,且
.
![]()
(1)若
,点
是
的中点,求证:平面
平面
;
(2)是否存在
,使得直线
与平面
所成角的正切值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的两个数列
,
满足
,
.且
.
(1)求证数列
为等差数列;
(2)求数列
的通项公式;
(3)设数列
,
的前n项和分别为
,
,求使得等式
成立的有序数对
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com