【题目】已知函数
,
.
(1)讨论函数
的单调性;
(2)当
时,函数
在区间
的最小值为
,试比较
与
的大小.
【答案】(1)答案见解析.(2)![]()
【解析】
(1)因为
,
,可得
,分别讨论
,
和
函数
的单调性,即可求得答案;
(2)求得函数
在区间
的最小值
,构造函数
(
),求其最值,即可求得答案.
![]()
,
.
![]()
①当![]()
![]()
当
,即
,![]()
此时
在
是单调递增
当
,即
,![]()
此时
在
是单调递减
②当![]()
![]()
ⅰ.当
时,即
,不符题意;
ⅱ.当
时,即
,不符题意;
ⅲ. 当
时,即
,故![]()
由
,解得
,![]()
则当
或
,
,此时
是单调递增;
当
,
,此时
是单调递减.
③当![]()
![]()
ⅰ.当
时,即![]()
则
在
恒成立,此时
是单调递减
ⅱ.当
时,即
,
则
在
恒成立,当且仅当
等号成立
此时此时
在
是单调递减
ⅲ. 当
时,即![]()
故![]()
由
,解得
,![]()
则当
或
,
,此时
是单调递减;
当
,
,此时
是单调递增.
(2)当
时,![]()
![]()
![]()
则当
或
,
,此时
是单调递增;
当
,
,此时
是单调递减.
函数
在区间
上,
当
,
单调递减.
当
,
单调递增.
当
,
取得最小值,![]()
令
,(
)
即![]()
可得:
(
)
![]()
![]()
![]()
当
,
,可得
单调递减;
当
,
,可得
单调递增;
当
时,
取的最小值,![]()
故![]()
![]()
![]()
故![]()
科目:高中数学 来源: 题型:
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
![]()
等级 | 不合格 | 合格 | ||
得分 |
|
|
|
|
频数 | 6 |
| 24 |
|
(1)由该题中频率分布直方图求测试成绩的平均数和中位数;
(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;
(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为
,求
的数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长度为
的线段
的两个端点
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
,且斜率不为零的直线
与曲线
交于两点
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数?若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险的基准保费为a元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况相联系,最终保费
基准保费
(
与道路交通事故相联系的浮动比率),具体情况如下表:
交强险浮动因素和浮动费率比率表 | ||
类别 | 浮动因素 | 浮动比率 |
| 上一个年度未发生有责任道路交通事故 | 下浮 |
| 上两个年度未发生有责任道路交通事故 | 下浮 |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮 |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 |
|
| 上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故 | 上浮 |
| 上一个年度发生有责任道路交通死亡事故 | 上浮 |
为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:
类型 |
|
|
|
|
|
|
数量 | 20 | 10 | 10 | 38 | 20 | 2 |
若以这100辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为( )
A.a元B.
元C.
元D.
元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )
A.若任意选择三门课程,选法总数为![]()
B.若物理和化学至少选一门,选法总数为![]()
C.若物理和历史不能同时选,选法总数为![]()
D.若物理和化学至少选一门,且物理和历史不能同时选,选法总数为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.
![]()
(1)根据上述样本数据,将
列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?
(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为
,求随机变量
的期望和方差;
(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为
,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com