【题目】已知sinα+cosα=
(0<α<π),则tanα=( )
A.![]()
B.![]()
C.![]()
D.
或 ![]()
【答案】B
【解析】解:将已知等式sinα+cosα=
①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=
, ∴2sinαcosα=﹣
<0,
∵0<α<π,
∴sinα>0,cosα<0,即sinα﹣cosα>0,
∴(sinα﹣cosα)2=1﹣2sinαcosα=
,
∴sinα﹣cosα=
②,
联立①②,解得:sinα=
,cosα=﹣
,
则tanα=﹣
.
故选B
已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log
(1﹣x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a2=3,S5=25.
(1)求数列{an}的通项公式an;
(2)设数列{
}的前n项和为Tn , 是否存在k∈N* , 使得等式2﹣2Tk=
成立,若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+|x﹣5|.
(1)当a=1时,求f(x)的最小值;
(2)如果对任意的实数x,都有f(x)≥1成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
为圆
的直径,点
在圆
上,且
,矩形
所在的平面和圆
所在的平面垂直,且
.
(1)求证:平面
平面
;
(2)在线段
上是否存在了点
,使得
平面
?并说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,三角形VAB为等边三角形,AC⊥BC且 AC=BC=
,O、M分别为AB和VA的中点. ![]()
(1)求证:VB∥平面MOC;
(2)求直线MC与平面VAB所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,其前
项和
满足
.
(1)求证:数列
为等差数列,并求
的通项公式;
(2)设
,求数列
的前
项和
;
(3)设
为非零整数
,是否存在
的值,使得对任意
恒成立,若存在求出
的值,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,直平行六面体
中,
为棱
上任意一点,
为底面
(除
外)上一点,已知
在底面
上的射影为
,若再增加一个条件,就能得到
,现给出以下条件:
①
;②
在
上;③
平面
;④直线
和
在平面
的射影为同一条直线.其中一定能成为增加条件的是__________.(把你认为正确的都填上)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com