【题目】如图,在三棱柱
中,四边形
为菱形,
,
为等腰直角三角形,
,
,
,则异面直线AB与
所成角的余弦值为_______.
![]()
【答案】![]()
【解析】
由于
,所以
或其补角为异面直线AB与
所成的角,取AC的中点D,再结合已知可得
,再.取
的中点E,可证得
,从而可求出
,在
中利用余弦定理可得
的余弦值,也可建空间直角坐标系,利用空间向量求解.
解法一:在三棱柱
中,
,所以
或其补角为异面直线AB与
所成的角.取AC的中点D,连接
,BD,因为
为等腰直角三角形,D是AC的中点,所以
,又
,所以
.因为四边形
为菱形,
,所以
,
.在
中,
,
,
,所以
,即
.又
,所以
平面ABC.取
的中点E,连接
,CE,易知
,
,所以四边形
为平行四边形,所以
,所以
平面ABC,即
平面
,又
平面
,所以
.连接
,在
中,
,
,所以
,在
中,
,
,
,由余弦定理得
,所以异面直线AB与
所成角的余弦值为
.
解法二:取AC的中点D,连接
,BD,因为
为等腰直角三角形,
,D是AC的中点,所以
,
.又四边形
为菱形,
,所以
,
.在
中,
,
,
,所以
,即
.又
,所以
平面ABC,所以以D为坐标原点,以DB,DC,
所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则
,
,
,
,所以
,
,所以
,所以异面直线AB与
所成角的余弦值为
.
故答案为:![]()
![]()
科目:高中数学 来源: 题型:
【题目】如图,斜率为
的直线交抛物线
于
两点,已知点
的横坐标比点
的横坐标大4,直线
交线段
于点
,交抛物线于点
.
![]()
(1)若点
的横坐标等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提升学生“数学建模”的核心素养,某校数学兴趣活动小组指导老师给学生布置了一项探究任务:如图,有一张边长为27cm的等边三角形纸片ABC,从中裁出等边三角形纸片
作为底面,从剩余梯形
中裁出三个全等的矩形作为侧面,围成一个无盖的三棱柱(不计损耗).
![]()
(1)若三棱柱的侧面积等于底面积,求此三棱柱的底面边长;
(2)当三棱柱的底面边长为何值时,三棱柱的体积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每个人每日健步的步数,从而为科学健身提供一定的帮助.某市工会为了解该市市民每日健步走的情况,从本市市民中随机抽取了2000名市民(其中不超过40岁的市民恰好有1000名),利用手机计步软件统计了他们某天健步的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组(单位:千步),将抽取的不超过40岁的市民的样本数据绘制成频率分布直方图如右,将40岁以上的市民的样本数据绘制成频数分布表如下,并利用该样本的频率分布估计总体的概率分布.
![]()
分组 (单位:千步) |
|
|
|
|
|
|
|
|
|
频数 | 10 | 20 | 20 | 30 | 400 | 200 | 200 | 100 | 20 |
(1)现规定,日健步步数不低于13000步的为“健步达人”,填写下面列联表,并根据列联表判断能否有
%的把握认为是否为“健步达人”与年龄有关;
健步达人 | 非健步达人 | 总计 | |
40岁以上的市民 | |||
不超过40岁的市民 | |||
总计 |
(2)(ⅰ)利用样本平均数和中位数估计该市不超过40岁的市民日健步步数(单位:千步)的平均数和中位数;
(ⅱ)由频率分布直方图可以认为,不超过40岁的市民日健步步数
(单位:千步)近似地服从正态分布
,其中
近似为样本平均数
(每组数据取区间的中点值),
的值已求出约为
.现从该市不超过40岁的市民中随机抽取5人,记其中日健步步数
位于
的人数为
,求
的数学期望.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(简称:AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI大小分为六级:
为优,
为良,
为轻度污染,
为中度污染,
为重度污染,
为严重污染.下面记录了北京市
天的空气质量指数,根据图表,下列结论错误的是( )
![]()
A.在北京这
天的空气质量中,按平均数来考查,最后
天的空气质量优于最前面
天的空气质量
B.在北京这
天的空气质量中,有
天达到污染程度
C.在北京这
天的空气质量中,
月
日空气质量最差
D.在北京这
天的空气质量中,达到空气质量优的天数有
天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数
(其中
)的图象如图所示,为了得到
的图象,则只要将
的图象上所有的点( )
A.向左平移
个单位长度,纵坐标缩短到原来的
,横坐标不变
B.向左平移
个单位长度,纵坐标伸长到原来的3倍横坐标不变
C.向右平移
个单位长度,纵坐标缩短到原来的
,横坐标不变
D.向右平移
个单位长度,纵坐标伸长到原来的3倍,横坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点O,其右焦点为F(1,0),以坐标原点O为圆心,椭圆短半轴长为半径的圆与直线x﹣y
0的相切.
(1)求椭圆C的方程;
(2)经过点F的直线l1,l2分别交椭圆C于A、B及C、D四点,且l1⊥l2,探究:是否存在常数λ,使
恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com