【题目】已知
为坐标原点,椭圆
的左,右焦点分别为
,
,
点又恰为抛物线
的焦点,以
为直径的圆与椭圆
仅有两个公共点.
(1)求椭圆
的标准方程;
(2)若直线
与
相交于
,
两点,记点
,
到直线
的距离分别为
,
,
.直线
与
相交于
,
两点,记
,
的面积分别为
,
.
(ⅰ)证明:
的周长为定值;
(ⅱ)求
的最大值.
【答案】(1)
;(2)(i)详见解析;(ii)
.
【解析】
(1)由已知求得
,可得
,又以
为直径的圆与椭圆
仅有两个公共点,知
,从而求得
与
的值,则答案可求;
(2)
由题意,
为抛物线
的准线,由抛物线的定义知,
,结合
,可知等号当且仅当
,
,
三点共线时成立.可得直线
过定点
,根据椭圆定义即可证明
为定值;
若直线
的斜率不存在,则直线
的方程为
,求出
与
可得
;若直线
的斜率存在,可设直线方程为
,
,
,
,
,
,
,
,
,方便联立直线方程与抛物线方程,直线方程与椭圆方程,利用弦长公式求得
,
,可得
,由此可求
的最大值.
解:(1)因为
为抛物线
的焦点,故![]()
所以![]()
又因为以
为直径的圆与椭圆
仅有两个公共点知:![]()
所以
,![]()
所以椭圆
的标准方程为:![]()
(2)(ⅰ)由题知,因为
为抛物线
的准线
由抛物线的定义知:![]()
又因为
,等号当仅当
,
,
三点共线时成立
所以直线
过定点![]()
根据椭圆定义得:
![]()
(ⅱ)若直线
的斜率不存在,则直线
的方程为![]()
因为
,
,所以![]()
若直线
的斜率存在,则可设直线
,设
,![]()
由
得,![]()
所以
,![]()
设
,
,
由
得,![]()
则
,![]()
所以![]()
则![]()
综上知:
的最大值等于![]()
科目:高中数学 来源: 题型:
【题目】第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是( )
![]()
A.第一场得分的中位数为
B.第二场得分的平均数为![]()
C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(
,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(
)又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足
.其中星等为
的星的亮度为
.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的
倍,则与
最接近的是(当
较小时,
)
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:
是圆
的圆心,圆
过坐标原点
;点
、
均在
轴上,圆
与圆
的半径都等于2,圆
圆
均与圆
外切.已知直线
过点
.
(1)若直线
与圆
、圆
均相切,则
截圆
所得弦长为__________;
(2)若直线
截圆
、圆
、圆
所得弦长均等于
,则
__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场春节期间推出一项优惠活动,活动规则如下:消费额每满300元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在区域Ⅰ返券60元;停在区域Ⅱ返券30元;停在区域Ⅲ不返券.例如:消费600元,可抽奖2次,所获得的返券金额是两次金额之和.
![]()
(Ⅰ)若某位顾客消费300元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费600元,并按规则参与了活动,他获得返券的金额记为
(元).求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思为“今有水池1丈见方(即
尺),芦苇生长在水的中央,长出水面的部分为1尺.将芦苇向池岸牵引,恰巧与水岸齐接(如图所示).试问水深、芦苇的长度各是多少?假设
,现有下述四个结论:
①水深为12尺;②芦苇长为15尺;③
;④
.
其中所有正确结论的编号是( )
![]()
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年电子商务蓬勃发展,现从某电子商务平台评价系统中随机选出200次成功交易,并对其评价进行统计,统计结果显示:网购者对商品的满意率为0.70,对快递的满意率为0.60,其中对商品和快递都满意的交易为80次.
(1)根据已知条件完成下面的2×2列联表,并回答在犯错误的概率不超过0.10的前提下,能否认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(2)为进一步提高购物者的满意度,平台按分层抽样方法从200次交易中抽取10次交易进行问卷调查,详细了解满意与否的具体原因,并在这10次交易中再随机抽取2次进行电话回访,听取购物者意见.求电话回访的2次交易至少有一次对商品和快递都满意的概率.
附:
(其中
为样本容量)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com