精英家教网 > 高中数学 > 题目详情

【题目】为了了解某校九年级400名学生的体质情况,随机抽查了20名学生,测试1 min仰卧起坐的成绩(次数),测试成绩如下:

30 35 32 33 28 36 34 28 25 40

28 32 30 42 37 36 33 31 26 24

120名学生的平均成绩是多少?标准差是多少?

2)次数位于之间有多位同学?所占的百分比是多少?

【答案】1;(214位;70%.

【解析】

1)平均数的计算方法是求出这20名学生的总分之和,然后除以学生数20,再代入方差公式即可计算标准差;

2)根据(1)计算,位于此次数区间人数÷总人数×100%,列式计算即可求得百分比.

120名学生的平均成绩为:

.

方差:

即标准差.

2

所以次数位于之间的有14位同学,

所占的百分比是70%.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆心为点,点是圆内一个定点,是圆上任意一点,线段的垂直平分线和半径相交于点在圆上运动.

l)求动点的轨迹的方程;

2)若为曲线上任意一点,|的最大值;

3)经过点且斜率为的直线交曲线两点在轴上是否存在定点,使得恒成立?若存在,求出点坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数:若存在闭区间和常数e,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间D上的平底型函数.

1)判断函数是否为R上的平底型函数?并说明理由;

2)若函数是区间上的平底型函数,求mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.

(1)分别求出两人得分的平均数与方差;

(2)根据图和上面算得的结果,对两人的训练成绩作出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:

1证明直线l经过定点并求此点的坐标;

2若直线l不经过第四象限,求k的取值范围;

3若直线lx轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面.

(Ⅰ)求证:平面

(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,),其中数列都是递增数列.

1)若,判断直线是否平行;

2)若数列都是正项等差数列,它们的公差分别为,设四边形的面积为),求证:也是等差数列;

3)若),,记直线的斜率为,数列8项依次递减,求满足条件的数列的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,过点的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为与曲线C相交于不同的两点M,N.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)若,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知px2-7x+100qx2-4mx+3m20,其中m0

1)若m=3pq都是真命题,求x的取值范围;

2)若pq的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案