【题目】设
,
为奇函数.
(1)求
的值;
(2)若对任意
恒有
成立,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)由
求出实数
的值,求出函数
的解析式,然后利用奇偶性的定义验证函数
为奇函数;
(2)分析出函数
为增函数,结合奇函数的性质,由
得出
,由单调性得出
对任意的
恒成立,构造函数
,对该二次函数的对称轴与区间
的位置关系进行分类讨论,分析函数
在区间
上的单调性,得出最小值
,然后解不等式
可得出实数
的取值范围.
(1)因为函数
为奇函数,且定义域为
,故
,所以
.
故
,所以
,此时,
,定义域为
,关于原点对称.
,则函数
为奇函数;
(2)由(1)得
,
则函数
在
上为减函数,由于函数
为奇函数,
由
,可得
,则有
.
,则该不等式对任意的
恒成立,
构造函数
,其中
,则
.
二次函数
的图象开口向上,对称轴为直线
,下面分三种情况讨论:
①当
时,即
时,函数
在
上单调递增,
则函数
的最小值为
恒成立,
,此时
;
②当
时,即
时,函数
在
上单调递减,
则函数
的最小值为
,解得
,此时
;
③当
时,即
时,函数
在
上单调递减,在
上单调递增,则函数
的最小值为
,整理得
,
解得
,此时
.
综上所述,实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
的极坐标方程
.以极点为原点,极轴为
轴非负半轴建立平面直角坐标系,且在两坐标系中取相同的长度单位,直线
的参数方程为
(
为参数).
(1)写出曲线
的参数方程和直线
的普通方程;
(2)过曲线
上任意一点
作与直线
相交的直线,该直线与直线
所成的锐角为
,设交点为
,求
的最大值和最小值,并求出取得最大值和最小值时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
过点
,圆
,直线
与圆
交于
不同两点.
(Ⅰ)求直线
的斜率
的取值范围;
(Ⅱ)是否存在过点
且垂直平分弦
的直线
?若存在,求直线
斜率
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
经过点
(
,
),且两个焦点
,
的坐标依次为(
1,0)和(1,0).
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设
,
是椭圆
上的两个动点,
为坐标原点,直线
的斜率为
,直线
的斜率为
,求当
为何值时,直线
与以原点为圆心的定圆相切,并写出此定圆的标准方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器
(百台),其总成本为
(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入
(万元)满足
,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)求利润函数
的解析式(利润=销售收入-总成本);
(2)工厂生产多少百台产品时,可使利润最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )
A. 甲和乙不可能同时获奖 B. 丙和丁不可能同时获奖
C. 乙和丁不可能同时获奖 D. 丁和甲不可能同时获奖
【答案】C
【解析】若甲乙丙同时获奖,则甲丙的话错,乙丁的话对;符合题意;
若甲乙丁同时获奖,则乙的话错,甲丙丁的话对;不合题意;
若甲丙丁同时获奖,则丙丁的话错,甲乙的话对;符合题意;;
若丙乙丁同时获奖,则甲乙丙的话错,丁的话对;不合题意;
因此乙和丁不可能同时获奖,选C.
【题型】单选题
【结束】
12
【题目】已知当
时,关于
的方程
有唯一实数解,则
值所在的范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡的收益N与投入a(单位:万元)满足
,N=
a+20.设甲合作社的投入为x(单位:万元),两个合作社的总收益为f(x)(单位:万元).
(1)当甲合作社的投入为25万元时,求两个合作社的总收益;
(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com