精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2sin(A-$\frac{π}{3}$)=$\sqrt{3}$,sin(B-C)=4cosBsinC,则$\frac{b}{c}$等于(  )
A.2$\sqrt{2}$+1B.2$\sqrt{2}$-1C.$\sqrt{6}$+1D.$\sqrt{6}$-1

分析 由2sin(A-$\frac{π}{3}$)=$\sqrt{3}$,运用三角函数公式求出A,sin(B-C)和与差公式打开,再由正余弦弦定理,即可得$\frac{b}{c}$的值

解答 解:由2sin(A-$\frac{π}{3}$)=$\sqrt{3}$,
可得:sin(A-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$.
∵0<A<π
∴A=$\frac{2π}{3}$.
又∵sin(B-C)=sinBcosC-sinCcosB=4cosBsinC,
可得:sinBcosC=5cosBsinC.
得:sinBcosC+cosBsinC=6cosBsinC.
即sinA=6cosBsinC.
∴由正弦弦定理:得a=2c×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$.
得2a2+3c2-3b2=0,即${a}^{2}=\frac{3}{2}({b}^{2}+{c}^{2})$
由余弦弦定理:a2=b2+c2-2bc×cos(120°)=b2+c2+bc.
∴b2-2bc-5c2=0,
同时除以bc.
可得:$(\frac{b}{c})^{2}-2×\frac{b}{c}-5=0$.
解得:$\frac{b}{c}$=$\sqrt{6}+1$.
故选:C.

点评 本题考查三角形的余正弦定理和内角和定理以及和与差的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知全集U={x|y=log2(x-1)},集合A={x||x-2|<1},则∁UA=(  )
A.(3,+∞)B.[3,+∞)C.(1,3)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为6,且椭圆C与圆M:(x-2)2+y2=$\frac{40}{9}$的公共弦长为$\frac{4\sqrt{10}}{3}$.
(1)求椭圆C的方程,
(2)过点P(0,2)作斜率为k(k≠0)的直线l与椭圆C交于两点A,B,试判断在x轴上是否存在点D,使得△ADB为以AB为底边的等腰三角形,若存在,求出点D的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2x2-4ax)lnx+x2
(1)设a>0,求函数f(x)的单调区间.
(2)不等式(2x-4a)lnx>-x对?x∈[1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体最长的棱长度为(  )
A.$2\sqrt{2}$B.$\sqrt{5}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥E-ABCD中,△ADE是正三角形,侧面ADE⊥底面ABCD,AB∥DC,BD=2DC=4,AD=3,AB=5.
(Ⅰ)求证:BD⊥AE;
(Ⅱ)求二面角B-AE-D的正切值;
(Ⅲ)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设{an} 为公比q>1的等比数列,若a2013和a2014是方程4x2-8x+3=0的两根,则a2015+a2016=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一工厂生产了某种产品180件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、乙、丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了60件产品.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在两个正数a,b之间插入一个数x,可使得a,x,b成等差数列,若插入两个数y,z,可使得a,y,z,b成等比数列,求证:x+1≥$\sqrt{(y+1)(z+1)}$.

查看答案和解析>>

同步练习册答案