【题目】(1)如图,对于任一给定的四面体
,找出依次排列的四个相互平行的平面
,
,
,
,使得
,且其中每相邻两个平面间的距离都相等;
![]()
(2)给定依次排列的四个相互平行的平面
,
,
,
,其中每相邻两个平面间的距离为1,若一个正四面体
的四个顶点满足:
,求该正四面体
的体积.
【答案】(1)见解析; (2)
.
【解析】
(1)根据题意要作出相互平行且相邻距离相等的平面,所以先作直线平行,且取等分点,例如可取
的三等分点
,
,
的中点
,
的中点
,则有
,
,从而可得面面平行;
(2)先将正四面体补形为正方体,结合条件确定正方体的棱长,即可求正四面体
的体积.
(1)![]()
取
的三等分点
,
,
的中点
,
的中点
,
过三点
,
,
作平面
,过三点
,
,
作平面
,
因为
,
,所以平面
平面
,
再过点
,
分别作平面
,
与平面
平行,那么四个平面,
,
,
依次相互平行,
由线段
被平行平面
,
,
,
截得的线段相等知,每相邻两个平面间的距离相等,故
,
,
,
为所求平面.
(2)如图,将此正四面体补形为正方体
(如图),
分别取
、
、
、
的中点
、
、
、
,
平面
与
是分别过点
、
的两平行平面,若其距离为1,
则正四面体
满足条件,右图为正方体的下底面,设正方体的棱长为
,
若
,因为
,
,
在直角三角形
中,
,所以
,所以
,
又正四面体的棱长为
,
所以此正四面体的体积为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且
的面积是
.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线
与椭圆C交于P、Q两点,点P关于x轴的对称点为
(
与
不重合),则直线
与x轴交于点H,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里有大小相同的3个红球和3个黑球,从盒子里随机取球,取到每个球的可能性是相同的,设取到一个红球得1分,取到一个黑球得0分.
(Ⅰ)若从盒子里一次随机取出了3个球,求得2分的概率;
(Ⅱ)着从盒子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
为正方形,
平面
,
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求
与平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在一点
,使得平面
平面
?如果存在,求
的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
![]()
(1)求这4000名考生的半均成绩
(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布
,其中
分别取考生的平均成绩
和考生成绩的方差
,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为
,求
.(精确到0.001)
附:①
;
②
,则
;
③
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是菱形,
,
为等边三角形,
是线段
上的一点,且
平面
.
![]()
(1)求证:
为
的中点;
(2)若
为
的中点,连接
,
,
,
,平面
平面
,
,求三棱锥
的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com