【题目】已知函数
,
;
(1)写出函数
的最小正周期;
(2)请在下面给定的坐标系上用“五点法”画出函数
在区间
的简图;
(3)指出该函数的图象可由
的图象经过怎样的平移和伸缩变换得到?
![]()
科目:高中数学 来源: 题型:
【题目】如图,圆
:
.
![]()
(Ⅰ)若圆C与x轴相切,求圆C的方程;
(Ⅱ)已知
,圆
与x轴相交于两点
(点
在点
的左侧).过点
任作一条直线与圆
:
相交于两点A,B.问:是否存在实数a,使得
=
?若存在,求出实数a的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴
建立极坐标系,将点P绕极点O逆时针90得到点Q,设点Q的轨迹为曲线C2.
求曲线C1,C2的极坐标方程;
射线=
(>0)与曲线C1,C2分别交于A,B两点,定点M(2,0),求MAB的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且经过点P
,过它的左、右焦点
分别作直线l1和12.l1交椭圆于A.两点,l2交椭圆于C,D两点, 且![]()
![]()
(1)求椭圆的标准方程.
(2)求四边形ACBD的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在矩形
中,
,
,点
是线段
上靠近点
的一个三等分点,点
是线段
上的一个动点,且
.如图,将
沿
折起至
,使得平面
平面
.
![]()
(1)当
时,求证:
;
(2)是否存在
,使得
与平面
所成的角的正弦值为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com