科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列
的前
项和为
,函数
,
(其中
均为常数,且
),当
时,函数
取得极小值.![]()
均在函数
的图像上(其中
是
的导函数).
(Ⅰ)求
的值;
(Ⅱ)求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数
.
(Ⅰ) 求函数
的单调区间;
(Ⅱ)若函数
的图像在点
处的切线的倾斜角为
,问:
在什么范围取值时,对于任意的
,函数g(x)=x3 +x2
在区间
上总存在极值?
(Ⅲ)当
时,设函数
,若在区间
上至少存在一个
,
使得
成立,试求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数![]()
(Ⅰ)若
,试确定函数
的单调区间;
(Ⅱ)若
,且对于任意
,
恒成立,试确定实数
的取值范围;
(Ⅲ)设函数
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,(
).
(Ⅰ)已知函数
的零点至少有一个在原点右侧,求实数
的范围.
(Ⅱ)记函数
的图象为曲线
.设点
,
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”.
试问:函数
(
且
)是否存在“中值相依切线”,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com