【题目】如图,已知四棱锥
中,底面
是矩形,
,
,
.
![]()
(1)求证:平面
平面
;
(2)求直线
与平面
所成角的正弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)取
,
的中点
,
,连接
,
,
,利用等边三角形和等腰三角形的性质、勾股定理的逆定理,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可;
(2)解法一:利用线面垂直的判定定理、平行线的性质,结合三棱锥体积公式进行求解即可;
解法二:建立空间直角坐标系,利用两点间距离公式结合已知求出点
的坐标,最后利用空间向量夹角公式进行求解即可.
解:(1)如图,取
,
的中点
,
,连接
,
,
,
因为
,
,
所以,
,
,
又
,
所以,
,
又因为
,所以
,
所以
,即
,
平面
,
所以
平面
,而
平面
,
所以平面
平面
;
![]()
(2)解法一:设
到平面
的距离为
,
因为
,
,
所以
,
由(1)
,
,又
,所以
,
平面
,
所以
平面
,因为
,所以
点到平面
的距离为
,
所以
,
所以
,
故直线
与平面
所成角的正弦值为
.
解法二:建系法
如图,建立空间坐标系,则
,
,
,
,
设
,由
,
得
![]()
即
,设平面
的法向量为
,
因为
,
,
所以
,令
,可得
,
于是
.
![]()
科目:高中数学 来源: 题型:
【题目】空气质量指数PM2.5(单位:
)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5 日均浓度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 |
|
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲乙两城市2020年5月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
![]()
(1)根据你所学的统计知识估计甲乙两城市15天内哪个城市空气质量总体较好?并简要说明理由.
(2)在15天内任取1天,估计甲乙两城市空气质量类别均为优或良的概率;
(3)在乙城市15个监测数据中任取2个,设
为空气质量类别为优或良的天数,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
(
,
)的部分图象如图所示,则下列结论正确的是( )
![]()
A.![]()
B.若把函数
的图像向左平移
个单位,则所得函数是奇函数
C.若把
的横坐标缩短为原来的
倍,纵坐标不变,得到的函数在
上是增函数
D.
,若
恒成立,则
的最小值为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年,某省将实施新高考,
年秋季入学的高一学生是新高考首批考生,新高考不再分文理科,采用
模式,其中语文、数学、外语三科为必考科目,满分各
分,另外,考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物
门科目中自选
门参加考试(
选
),每科目满分
分.为了应对新高考,某高中从高一年级
名学生(其中男生
人,女生
人)中,采用分层抽样的方法从中抽取n名学生进行调查.
(1)已知抽取的n名学生中含女生
人,求n的值及抽取到的男生人数;
(2)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的
名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下面表格是根据调查结果得到的
列联表,请将下面的列联表补充完整,并判断是否有
的把握认为选择科目与性别有关?说明你的理由;
选择“物理” | 选择“历史” | 总计 | |
男生 | 10 | ||
女生 | 30 | ||
总计 |
(3)在抽取到的
名女生中,在(2)的条件下,按选择的科目进行分层抽样,抽出
名女生,了解女生对“历史”的选课意向情况,在这
名女生中再抽取
人,求这
人中选择“历史”的人数为
人的概率.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知焦点为
的抛物线
上有一动点
,过点
作抛物线的切线
交
轴于点
.
![]()
(1)判断线段
的中垂线是否过定点,若是求出定点坐标,若不是说明理由;
(2)过点
作
的垂线交抛物线于另一点
,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“支付宝捐步”已经成为当下最热门的健身方式,为了了解是否使用支付宝捐步与年龄有关,研究人员随机抽取了5000名使用支付宝的人员进行调查,所得情况如下表所示:
50岁以上 | 50岁以下 | |
使用支付宝捐步 | 1000 | 1000 |
不使用支付宝捐步 | 2500 | 500 |
(1)由上表数据,能否有99.9%的把握认为是否使用支付宝捐步与年龄有关?
(2)55岁的老王在了解了捐步功能以后开启了自己的捐步计划,可知其在捐步的前5天,捐步的步数与天数呈线性相关.
第x天 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
步数 | 4000 | 4200 | 4300 | 5000 | 5500 |
(i)根据上表数据,建立
关于
的线性回归方程
;
(ii)记由(i)中回归方程得到的预测步数为
,若从5天中任取3天,记
的天数为X,求X的分布列以及数学期望.
附参考公式与数据:
,
;K2=
;
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上一动点A的坐标为
.
(1)求点A的轨迹E的方程;
(2)点B在轨迹E上,且纵坐标为
.
(i)证明直线AB过定点,并求出定点坐标;
(ii)分别以A,B为圆心作与直线
相切的圆,两圆公共弦的中点为H,在平面内是否存在定点P,使得
为定值?若存在,求出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com