【题目】如图,在矩形ABCD中,
,E为AB的中点.将
沿DE翻折,得到四棱锥
.设
的中点为M,在翻折过程中,有下列三个命题:
![]()
①总有
平面
;
②线段BM的长为定值;
③存在某个位置,使DE与
所成的角为90°.
其中正确的命题是_______.(写出所有正确命题的序号)
【答案】①②
【解析】
取
D的中点N,连接MN,EN,根据四边形MNEB为平行四边形判断①,②,假设DE⊥
C得出矛盾结论判断③.
取
D的中点N,连接MN,EN,
则MN为△
CD的中位线,
∴MN∥
CD,且MN=
CD
又E为矩形ABCD的边AB的中点,∴BE∥
CD,且BE=
CD
∴MN∥BE,且MN=BE即四边形MNEB为平行四边形,∴BM∥EN,
又EN平面A1DE,BM平面A1DE,
∴BM∥平面
DE,故①正确;
由四边形MNEB为平行四边形可得BM=NE,
而在翻折过程中,NE的长度保持不变,故BM的长为定值,故②正确;
取DE的中点O,连接
O,CO,
由
D=
E可知
O⊥DE,
若DE⊥
C,则DE⊥平面
OC,
∴DE⊥OC,又∠CDO=90°﹣∠ADE=45°,
∴△OCD为等腰直角三角形,故而CD
OD,
而OD
DE
,CD=4,与CD
OD矛盾,故DE与
C所成的角不可能为90°.
故③错误.
故答案为:①②.
![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
上的动点
到点
的距离减去
到直线
的距离等于1.
(1)求曲线
的方程;
(2)若直线
与曲线
交于
,
两点,求证:直线
与直线
的倾斜角互补.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机
软件层出不穷.为调查某款订餐软件的商家的服务情况,统计了10次订餐“送达时间”,得到茎叶图如下:(时间:分钟)
![]()
(1)请计算“送达时间”的平均数与方差:
(2)根据茎叶图填写下表:
送达时间 | 35分组以内(包括35分钟) | 超过35分钟 |
频数 | A | B |
频率 | C | D |
在答题卡上写出
,
,
,
的值;
(3)在(2)的情况下,以频率代替概率.现有3个客户应用此软件订餐,求出在35分钟以内(包括35分钟)收到餐品的人数
的分布列,并求出数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从
年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.
年份 | 网民人数 | 互联网普及率 | 手机网民人数 | 手机网民普及率 |
2009 |
|
|
|
|
2010 |
|
|
|
|
2011 |
|
|
|
|
2012 |
|
|
|
|
2013 |
|
|
|
|
2014 |
|
|
|
|
2015 |
|
|
|
|
2016 |
|
|
|
|
2017 |
|
|
|
|
2018 |
|
|
|
|
(互联网普及率
(网民人数/人口总数)×100%;手机网民普及率
(手机网民人数/人口总数)×100%)
(Ⅰ)从
这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;
(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记
为手机网民普及率超过50%的年数,求
的分布列及数学期望;
(Ⅲ)若记
年中国网民人数的方差为,手机网民人数的方差为
,试判断
与
的大小关系.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆方程为
,过点
的直线l交椭圆于点A,B,O是坐标原点,点P满足
,点N的坐标为
,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)
的最小值与最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在5月31日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:
,得到如下直方图:
![]()
(1)试通过直方图,估计5月31日当天网络购票的9600名乘客年龄的中位数;
(2)若在调查的且年龄在
段乘客中随机抽取两人,求两人均来自同一年龄段的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:
),统计的茎叶图如图所示:
![]()
(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案
:所有苹果均以5.5元/千克收购;
方案
:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C
上,过M作x轴的垂线,垂足为N,点P满足
.
(1)求点P的轨迹方程;
(2)设点
在直线
上,且
.证明:过点P且垂直于OQ的直线
过C的左焦点F.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com