【题目】如图,在平行六面体
中,
,
,
平面
,
与底面
所成角为
,
.
![]()
(1)求证:平行六面体
的体积
,并求
的取值范围;
(2)若
,求二面角
所成角的大小.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆
经过伸缩变换
后得到曲线
.以坐标原点为极点,
轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的直角坐标方程及直线
的直角坐标方程;
(2)设点
是
上一动点,求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数
如下:对于实数
,如果存在整数
,使得
,则
.则下列结论:①
是实数
上的递增函数;②
是周期为1的函数;③
是奇函数;④函数
的图像与直线
有且仅有一个交点.则正确结论的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(题文)(2017·长春市二模)如图,在四棱锥
中,底面
是菱形,
,
平面
,
,点
,
分别为
和
中点.
![]()
(1)求证:直线
平面
;
(2)求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱台
的上下底面分别是边长为2和4的正方形,
= 4且
⊥底面
,点
为
的中点.
![]()
(Ⅰ)求证:
面
;
(Ⅱ)在
边上找一点
,使
∥面
,
并求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,底面四边形
为正方形,已知
平面
,
,
.
![]()
(1)证明:
;
(2)求
与平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使得平面
平面
?若存在,求
的值并证明,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com