精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行六面体中,平面与底面所成角为

1)求证:平行六面体的体积,并求的取值范围;

2)若,求二面角所成角的大小.

【答案】1)证明见解析,;(2.

【解析】

1)由平面,可得,然后用表示,可证明结论,利用的取值范围,并结合三角函数的性质,可求得的取值范围;

2)证明直线两两垂直,然后分别以所在直线为轴,建立空间直角坐标系,再利用向量法求出二面角的余弦值,进而可求出答案.

1)∵平面

平行六面体的体积.

,则

,∴.

∴求的取值范围是.

2)∵,∴,∴直线两两垂直.

分别以所在直线为轴,建立如图所示的空间直角坐标系,

,设平面的法向量为

,即,取,可得

平面的一个法向量为

设二面角所成角为,则

所以二面角所成角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面,,为邻边作平行四边形,连接.

(1)求证:平面

(2)若二面角.

求证:平面平面

求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数如下:对于实数,如果存在整数,使得,.则下列结论:是实数上的递增函数;是周期为1的函数;是奇函数;④函数的图像与直线有且仅有一个交点.则正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(2017·长春市二模)如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点的中点.

(Ⅰ)求证: ;

(Ⅱ)在边上找一点,使∥面

并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面四边形为正方形,已知平面.

1)证明:

2)求与平面所成角的正弦值;

3)在棱上是否存在一点,使得平面平面?若存在,求的值并证明,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂用鲜牛奶在某台设备上生产AB两种奶制品.生产1A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产AB两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.

(I)Z的分布列和均值;

(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.

查看答案和解析>>

同步练习册答案