【题目】某学生每次投篮的命中概率都为
.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(
)x , 函数g(x)=log
x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[(
)t+1 , (
)t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log
f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据市场分析,某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本
(万元)可以看成月产量
(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本
(万元)关于月产量
(吨)的函数关系;
(2)已知该产品的销售价为每吨1.6万元,那么月产量为多少时,可获最大利润.
(3)当月产量为多少吨时,每吨平均成本最低,最低成本是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
、
两个不同的点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面结论正确的是( )
①一个数列的前三项是1,2,3,那么这个数列的通项公式
.
②由平面三角形的性质推测空间四面体的性质,这是一种合理推理.
③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.
④“所有3的倍数都是9的倍数,某数
一定是9的倍数,则
一定是9的倍数”,这是三段论推理,但其结论是错误的.
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com