精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为

1)证明:平面PDC

2)已知PDAD1Q上的点,QB=,求PB与平面QCD所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)利用线面平行的判定定理以及性质定理,证得,利用线面垂直的判定定理证得平面,从而得到平面

2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得,即可得到直线与平面所成角的正弦值.

1)证明:

在正方形中,

因为平面平面

所以平面

又因为平面,平面平面

所以

因为在四棱锥中,底面是正方形,所以

平面,所以

因为

所以平面

2)如图建立空间直角坐标系

因为,则有

,则有

因为QB=,所以有

设平面的法向量为

,即

,则,所以平面的一个法向量为,则

根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间和极值;

2)若存在满足,证明成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求的极坐标方程;

(2)设的交点为的交点为,且,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

1)当时,求函数的图象在处的切线方程.

2)若函数在定义域上为单调增函数.

①求的最大整数值;

②证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为(

A.20°B.40°

C.50°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1),求的取值范围;

(2),且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的定义域恰是不等式的解集,其值域为,函数的定义域为,值域为.

1)求定义域和值域

2)试用单调性的定义法解决问题:若存在实数,使得函数上单调递减,上单调递增,求实数的取值范围并用表示

3)是否存在实数,使成立?若存在,求实数的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案