【题目】已知函数f(x)=
.
(1)判断函数f(x)的奇偶性;
(2)判断并用定义证明函数f(x)在其定义域上的单调性.
(3)若对任意的t
1,不等式f(
)+f(
)<0恒成立,求k的取值范围.
【答案】(1)见解析; (2)见解析; (3)
.
【解析】
(1)根据奇偶性的判定方法求解即可;(2)根据“取值、作差、变形、定号、结论”的步骤证明即可;(3)根据函数的单调性和奇偶性,将不等式转化为
对任意t
1恒成立求解,通过换元法并结合分离参数求出函数的最值后可得所求的范围.
(1)∵2x+1≠0,
∴函数
的定义域为R,关于原点对称.
∵
,
∴函数
为奇函数.
(3)函数
在定义域上为增函数.证明如下:
设
,且
,
则
,
∵y=2x在
上是增函数,且
,
∴
,
∴
,
∴
,
∴函数
在定义域内是增函数.
(3)∵
,
∴
.
∵函数
是奇函数,
∴
.
又函数
在定义域内是增函数,
∴
对任意
1恒成立,
∴
对任意t
1恒成立.
令
,
,则
,
∵函数
在
上是增函数,
∴
,
∴
,
∴实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】执行如图所示的程序框图,若输出的结果为2,则输入的正整数a的可能取值的集合是( ) ![]()
A.{1,2,3,4,5}
B.{1,2,3,4,5,6}
C.{2,3,4,5}
D.{2,3,4,5,6}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
满足如下四个条件:
①定义域为
;
②
;
③当
时,
;
④对任意
满足
.
根据上述条件,求解下列问题:
⑴求
及
的值.
⑵应用函数单调性的定义判断并证明
的单调性.
⑶求不等式
的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项都是正数的数列{an}的前n项和为Sn , Sn=an2+
an , n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn﹣bn﹣1=2an(n≥2),求数列{
}的前n项和Tn
(3)若Tn≤λ(n+4)对任意n∈N*恒成立,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y (千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)求z关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点列{An}、{Bn}分别在锐角两边(不在锐角顶点),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q表示点P与Q不重合),若dn=|AnBn|,Sn为△AnBnBn+1的面积,则( ) ![]()
A.{dn}是等差数列
B.{Sn}是等差数列
C.{d
}是等差数列
D.{S
}是等差数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com