精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题:

①函数的最大值为1

②已知集合,则集合A的真子集个数为3

③若为锐角三角形,则有

函数在区间内单调递增的充分必要条件.

其中正确的命题是______.(填序号)

【答案】②③④

【解析】

由二倍角公式结合正弦函数的性质判断①;由集合的知识判断②;由锐角三角形的定义以及正弦函数的单调性,结合诱导公式判断③;由二次函数的图象和性质,集合充分必要条件的定义判断④.

,得的最大值为,故①错误;

,则集合的真子集为,共有三个,故②正确;

为锐角三角形,,则

上为增函数,

同理可证,

,故③正确;

时,函数在区间的解析式为,由对称轴可知,函数在区间内单调递增

若函数在区间内单调递增,结合二次函数的对称轴,可知,则

函数在区间内单调递增的充分必要条件.故④正确;

故答案为:②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知动直线的参数方程:,(为参数,) ,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若直线与曲线恰好有2个公共点时,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCDEPD的中点.

1)证明:平面AEC

2)设AP1AD,三棱锥PABD的体积V,求A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,底面为菱形, 相交于点,四边形为直角梯形, ,平面底面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处切线的方程;

(Ⅱ)求函数的单调区间;

(Ⅲ)当时,恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是过点夹角为的两条直线,且与圆心为,半径长为的圆分别相切,设圆周上一点的距离分别为,那么的最小值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将编号为1,2,…,18的18名乒乓球运动员分配在9张球台上进行单打比赛,规定每一张球台上两选手编号之和均为大于4的平方数.记{7号与18号比赛}为事件p.则p为(  ).

A. 不可能事件 B. 概率为的随机事件

C. 概率为的随机事件 D. 必然事件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥平面平面为棱上的一点为棱的中点为棱上的一点平面是边长为4的正三角形,.

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案