【题目】下列四个命题:
①函数
的最大值为1;
②已知集合
,则集合A的真子集个数为3;
③若
为锐角三角形,则有
;
④“
”是“函数
在区间
内单调递增”的充分必要条件.
其中正确的命题是______.(填序号)
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知动直线
的参数方程:
,(
为参数,
) ,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)若直线
与曲线
恰好有2个公共点时,求直线
的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
![]()
(1)证明:
平面AEC;
(2)设AP=1,AD=
,三棱锥P-ABD的体积V=
,求A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体
中,底面
为菱形,
,
,
与
相交于
点,四边形
为直角梯形,
,
,
,平面
底面
.
![]()
(1)证明:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将编号为1,2,…,18的18名乒乓球运动员分配在9张球台上进行单打比赛,规定每一张球台上两选手编号之和均为大于4的平方数.记{7号与18号比赛}为事件p.则p为( ).
A. 不可能事件 B. 概率为
的随机事件
C. 概率为
的随机事件 D. 必然事件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,平面
平面
,
为棱
上的一点,且
,
为棱
的中点,
为棱
上的一点,若
平面
,
是边长为4的正三角形,
,
.
![]()
(1)求证:平面
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com