【题目】2020年寒假期间,某高中决定深入调查本校学生寒假期间在家学习情况,并将依据调查结果对相应学生提出针对性学习建议.现从本校高一、高二、高三三个年级中分别随机选取30,45,75人,然后再从这些学生中抽取10人,进行学情调查.
(1)若采用分层抽样抽取10人,分别求高一、高二、高三应抽取的人数.
(2)若被抽取的10人中,有6人每天学时超过7小时,有4人每天学时不足4小时,现从这10人中,再随机抽取4人做进一步调查.
(i)记事件A为“被抽取的4人中至多有1人学时不足4小时”,求事件A发生的概率;
(ii)用ξ表示被抽取的4人中学时不足4小时的人数,求随机变量ξ的分布列和数学期望.
【答案】(1)高一、高二、高三应抽取的人数分别为2人,3人,5人;(2)(i)
;(ii)见解析,![]()
【解析】
(1)总数为30+45+75=150,从这些学生中抽取10人,根据分层抽样法求出高一、高二、高三应抽取的人数即可;
(2)(i)记事件A为“被抽取的4人中至多有1人学时不足4小时”,记事件B为“被抽取的4人中恰有1人学时不足4小时”,记事件C为“被抽取的4人中恰有0人学时不足4小时”,则由P(A)=P(B∪C)=P(B)+P(C),求出概率即可;
(ii)随机变量ξ表示被抽取的4人中学时不足4小时的人数,则ξ=0,1,2,3,4,求出随机变量ξ的分布列和数学期望即可.
(1)从本校高一、高二、高三三个年级中分别随机选取30,45,75人,
30+45+75=150,
从这些学生中抽取10人,根据分层抽样法,高一应抽取10
2人,高二应抽取10
人,高三应抽取10
人,
故高一、高二、高三应抽取的人数分别为2人,3人,5人;
(2)(i)记事件A为“被抽取的4人中至多有1人学时不足4小时”,记事件B为“被抽取的4人中恰有1人学时不足4小时”,记事件C为“被抽取的4人中恰有0人学时不足4小时”,则P(A)=P(B∪C)=P(B)+P(C)
;
(ii)随机变量ξ表示被抽取的4人中学时不足4小时的人数,则ξ=0,1,2,3,4,
则
,
,
,
,
,
随机变量ξ的分布列如下:
ξ | 0 | 1 | 2 | 3 | 4 |
P |
|
|
| |
|
E(ξ)
.
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
![]()
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,当
时,
,给出下列命题:
①当
时,
;
②函数
有2个零点;
③
的解集为
;
④
,
,都有
.
其中真命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十五巧板、又称益智图,为清朝浙江省德清知县童叶庚在同治年间所发明,它能拼出草木、花果、鸟兽、鱼虫、文字等图案.十五巧板由十五块板组成一个大正方形(如图1),其中标号为2,3,4,5的小板均为等腰直角三角形,图2是用十五巧板拼出的2019年生肖猪的图案,则从生肖猪图案中任取一点,该点恰好取自阴影部分中的概率为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2|x+2|+|x﹣3|.
(1)求不等式f(x)≥8的解集;
(2)若a>0,b>0,且函数F(x)=f(x)﹣3a﹣2b有唯一零点x0,证明:
f(x0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
过点
,离心率为
,
分别是椭圆
的左、右顶点,过右焦点
且斜率为
的直线
与椭圆
相交于
两点.
![]()
(1)求椭圆
的标准方程;
(2)记
、
的面积分别为
、
,若
,求
的值;
(3)记直线
、
的斜率分别为
、
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象如图所示,给出四个函数:①
,②
,③
,④
,又给出四个函数的图象,则正确的匹配方案是( ).
![]()
A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙
C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com