【题目】某省在2017年启动了“3+3”高考模式.所谓“3+3”高考模式,就是语文、数学、外语(简称语、数、外)为高考必考科目,从物理、化学、生物、政治、历史、地理(简称理、化、生、政、史、地)六门学科中任选三门作为选考科目.该省某中学2017级高一新生共有990人,学籍号的末四位数从0001到0990.
(1)现从高一学生中抽样调查110名学生的选考情况,问:采用什么样的抽样方法较为恰当?(只写出结论,不需要说明理由)
(2)据某教育机构统计,学生所选三门学科在将来报考专业时受限制的百分比是不同的.该机构统计了受限百分比较小的十二种选择的百分比值
,制作出如下条形图.
![]()
设以上条形图中受限百分比的均值为
,标准差为
.如果一个学生所选三门学科专业受限百分比在区间
内,我们称该选择为“恰当选择”.该校李明同学选择了化学,然后从余下五门选考科目中任选两门.问李明的选择为“恰当选择"的概率是多少?(均值
,标准差
均精确到0.1)
(参考公式和数据:
,
)
科目:高中数学 来源: 题型:
【题目】“一带一路”近年来成为了百姓耳熟能详的热门词汇,对于旅游业来说,“一带一路”战略的提出,让“丝路之旅”超越了旅游产品、旅游线路的简单范畴,赋予了旅游促进跨区域融合的新理念. 而其带来的设施互通、经济合作、人员往来、文化交融更是将为相关区域旅游发展带来巨大的发展机遇.为此,旅游企业们积极拓展相关线路;各地旅游主管部门也在大力打造丝路特色旅游品牌和服务.某市旅游局为了解游客的情况,以便制定相应的策略. 在某月中随机抽取甲、乙两个景点10天的游客数,统计得到茎叶图如下:
![]()
(1)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,以每天游客人数频率作为概率.今从这段时期内任取4天,记其中游客数超过130人的天数为
,求概率
;
(2)现从上图20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于125且不高于135人的天数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
)与双曲线
(
,
)有相同的焦点
,点
是两条曲线的一个交点,且
轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程
(
为参数).直线
的参数方程
(
为参数).
(Ⅰ)求曲线
在直角坐标系中的普通方程;
(Ⅱ)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,当曲线
截直线
所得线段的中点极坐标为
时,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟
米,每分钟的用氧量为
升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟
米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为
升;
(1)将
表示为
的函数;
(2)若
,求总用氧量
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一智能扫地机器人在A处发现位于它正西方向的B处和北偏东
方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少0.4m,于是选择沿
路线清扫.已知智能扫地机器人的直线行走速度为0.2m/s,忽略机器人吸入垃圾及在B处旋转所用时间,10秒钟完成了清扫任务.
![]()
(1)B、C两处垃圾的距离是多少?(精确到0.1)
(2)智能扫地机器人此次清扫行走路线的夹角
是多少?(用反三角函数表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com