【题目】已知数列
的各项均为正数,且
,对于任意的
,均有
,
.
(1)求证:
是等比数列,并求出
的通项公式;
(2)若数列
中去掉
的项后,余下的项组成数列
,求
;
(3)设
,数列
的前
项和为
,是否存在正整数
,使得
、
、
成等比数列,若存在,求出
的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
的图像与函数
的图像关于直线
对称.
(1)求函数
的解析式;
(2)若函数
在区间
上的值域为
,求实数
的取值范围;
(3)设函数
,试用列举法表示集合
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,![]()
,记
.
(1)若
,
,当
时,求
的最大值;
(2)若
,
,且方程![]()
有两个不相等的实根
、
,求
的取值范围;
(3)若
,
,
,且a、b、c是三角形的三边长,试求满足等式:
有解的最大的x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足![]()
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形几何学是数学家伯努瓦曼德尔布罗在20世纪70年代创立的一门新的数学学科.它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图:
![]()
易知第三行有白圈5个,黑圈4个.我们采用“坐标”来表示各行中的白圈、黑圈的个数.比如第一行记为
,第二行记为
,第三行记为
.照此规律,第
行中的白圈、黑圈的“坐标”为
,则
________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体
的棱长为2,E、F、G分别为
的中点,给出下列命题:
![]()
①异面直线EF与AG所成的角的余弦值为
;
②过点E、F、G作正方体的截面,所得的截面的面积是
;
③
平面![]()
④三棱锥
的体积为1
其中正确的命题是_____________(填写所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装加工厂为了提高市场竞争力,对其中一台生产设备提出了甲、乙两个改进方案:甲方案是引进一台新的生产设备,需一次性投资1000万元,年生产能力为30万件;乙方案是将原来的设备进行升级改造,需一次性投入700万元,年生产能力为20万件.根据市场调查与预测,该产品的年销售量的频率分布直方图如图所示,无论是引进新生产设备还是改造原有的生产设备,设备的使用年限均为6年,该产品的销售利润为15元/件(不含一次性设备改进投资费用).
![]()
(1)根据年销售量的频率分布直方图,估算年销量的平均数
(同一组中的数据用该组区间的中点值作代表);
(2)将年销售量落入各组的频率视为概率,各组的年销售量用该组区间的中点值作年销量的估计值,并假设每年的销售量相互独立.
①根据频率分布直方图估计年销售利润不低于270万元的概率:
②若以该生产设备6年的净利润的期望值作为决策的依据,试判断该服装厂应选择哪个方案.(6年的净利润=6年销售利润-设备改进投资费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子工厂生产一种电子元件,产品出厂前要检出所有次品.已知这种电子元件次品率为0.01,且这种电子元件是否为次品相互独立.现要检测3000个这种电子元件,检测的流程是:先将这3000个电子元件分成个数相等的若干组,设每组有
个电子元件,将每组的
个电子元件串联起来,成组进行检测,若检测通过,则本组全部电子元件为正品,不需要再检测;若检测不通过,则本组至少有一个电子元件是次品,再对本组个电子元件逐一检测.
(1)当
时,估算一组待检测电子元件中有次品的概率;
(2)设一组电子元件的检测次数为
,求
的数学期望;
(3)估算当
为何值时,每个电子元件的检测次数最小,并估算此时检测的总次数(提示:利用
进行估算).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com