【题目】在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足![]()
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点是抛物线![]()
的焦点,直线
与
相交于不同的两点
.
(1)求
的方程;
(2)若直线
经过点
,求
的面积的最小值(
为坐标原点);
(3)已知点
,直线
经过点
,
为线段
的中点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
满足
,
,
.
(1)求证:数列
为等比数列;
(2)对于大于
的正整数
、
(其中
),若
、
、
三个数经适当排序后能构成等差数列,求符合条件的数组
;
(3)若数列
满足
,是否存在实数
,使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰梯形
中,两腰
,底边
是
的三等分点,
是
的中点.分别沿
将四边形
和
折起,使
重合于点
,得到如图2所示的几何体.在图2中,
分别为
的中点.
![]()
(1)证明:
平面![]()
(2)求几何体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,沿河有A、B两城镇,它们相距
千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为
(万元),
表示污水流量;铺设管道的费用(包括管道费)
(万元),
表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为
、
,
、
两城镇连接污水处理厂的管道总长为
千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到
):
![]()
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为
千米,求联合建厂的总费用
与
的函数关系式,并求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
是各项均不为0的等差数列,公差为
,
为其前
项和,且满足
.数列
满足
,
为数列
的前
项和.
(1)求
;
(2)求
;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,且
,对于任意的
,均有
,
.
(1)求证:
是等比数列,并求出
的通项公式;
(2)若数列
中去掉
的项后,余下的项组成数列
,求
;
(3)设
,数列
的前
项和为
,是否存在正整数
,使得
、
、
成等比数列,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为
(
为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)过点
,倾斜角为
的直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其导函数设为
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)若函数
有两个极值点
,
,试用
表示
;
(Ⅲ)在(Ⅱ)的条件下,若
的极值点恰为
的零点,试求
,
这两个函数的所有极值之和的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com