【题目】已知函数
.
(1)若函数
有两个零点,求a的取值范围;
(2)设函数
的两个零点为
,求证:
.
【答案】(1)
;(2)证明见解析.
【解析】
(1)函数
有两个零点,等价于函数
的图象与直线
有两个交点,求
,判断
的单调性,从而求出a的取值范围;
(2)不妨设
,由题意
,可得
,两式相减,可得
,两式相加可得
.问题转化为求函数
的单调性,根据当
时,
,得到
,从而证明结论.
(1)函数
的定义域为
,函数
有两个零点,即方程
有两个根,
令
,则函数
的图象与直线
有两个交点.
,令
.
当
时,
;当
时,
,
函数
在
单调递增,在
单调递减,
,
且当
时,
;当
时,
;当
时,
.
函数
的图象与直线
有两个交点时,
,
即函数
有两个零点时,a的取值范围为
.
(2)证明:不妨设
.
由题意可得
.
两式相减可得
,两式相加可得
.
![]()
.
令
,则
,
函数
在
上单调递增,
,
.
.
又
,
,即
,
.
科目:高中数学 来源: 题型:
【题目】考察
所有排列,将每种排列视为一个
元有序实数组
,设
且
,设
为
的最大项,其中
.记数组
为
.例如,
时,
;
时,
.若数组
中的不同元素个数为2.
(1)若
,求所有
元有序实数组
的个数;
(2)求所有
元有序实数组
的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
(
为参数),
(
为参数)
(Ⅰ)将
的方程化为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若
上的点对应的参数为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新能源汽车正以迅猛的势头发展,越来越多的企业不断推出纯电动产品,某汽车集团要对过去一年推出的四款纯电动车型中销量较低的
车型进行产品更新换代.为了了解这种车型的外观设计是否需要改进,该集团委托某调查机构对大众做问卷调查,并从参与调查的人群中抽取了
人进行抽样分析,得到如下表格:(单位:人)
喜欢 | 不喜欢 | 合计 | |
青年人 |
|
|
|
中年人 |
|
|
|
合计 |
|
|
|
(1)根据表中数据,能否在犯错误的概率不超过
的前提下认为大众对
型车外观设计的喜欢与年龄有关?
(2)现从所抽取的中年人中按是否喜欢
型车外观设计利用分层抽样的方法抽取
人,再从这
人中随机选出
人赠送五折优惠券,求选出的
人中至少有
人喜欢该集团
型车外观设计的概率;
(3)将频率视为概率,从所有参与调查的人群中随机抽取
人赠送礼品,记其中喜欢
型车外观设计的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
对定义域内的每一个值
,在其定义域内都存在唯一的
,使
成立,则该函数为“依附函数”.
(1)判断函数
是否为“依附函数”,并说明理由;
(2)若函数
在定义域
上“依附函数”,求
的取值范围;
(3)已知函数
在定义域
上为“依附函数”.若存在实数
,使得对任意的
,不等式
都成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:
,且对任意的
,
(
,
,
,
)都有
,则称数列
为“G”数列.
(1)已知等比数列
的通项为
,证明:
是“G”数列;
(2)记数列
的前n项和为
且有
,若对每一个
取
,
中的较小者组成新的数列
,若数列
为“G”数列,求实数
的取值范围?
(3)若数列
是“G”数列,且数列
的前n项之积
满足
,求证:数列
是等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标系方程和直线
的普通方程;
(2)点
在曲线
上,且到直线
的距离为
,求符合条件的
点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的右焦点为
,右顶点为
,已知椭圆离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
的直线
与椭圆
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四面体ABCD的每个顶点都在球O的表面上,AB是球O的一条直径,且AC=2,BC=4,现有下面四个结论:
①球O的表面积为20π;②AC上存在一点M,使得AD∥BM;
③若AD=3,则BD=4;④四面体ABCD体积的最大值为
.
其中所有正确结论的编号是( )
A.①②B.②④C.①④D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com