【题目】已知函数
.
(Ⅰ)求
的单调区间;
(Ⅱ)若
都属于区间
且
,
,求实数
的取值范围.
【答案】(Ⅰ)当
时,
在
上单调递增,当
时,
在
上单调递增,在
上单调递减;(Ⅱ)
.
【解析】
试题第一问对函数求导,结合参数的范围,确定出导数的符号,从而求得函数的单调性,第二问有两个自变量对应的函数值相等,从函数的单调区间出发,来研究对应的单调性,从而确定出参数所满足的不等关系,最后求得结果.
试题解析:(Ⅰ)![]()
当
时,
在
上恒成立,则
在
上单调递增;
当
时,由
得
; 由
得
;
则
在
上单调递增,在
上单调递减;
综上,当
时,
在
上单调递增;
当
时,
在
上单调递增,在
上单调递减.
(Ⅱ)由(Ⅰ)知,当
时,
在
上单增,不合题意,故
.
由
则
,即![]()
即![]()
![]()
![]()
设![]()
![]()
在
上恒成立;所以
在
上递增,
由
式,函数
在
有零点,则
![]()
故实数
的取值范围为
.12分
科目:高中数学 来源: 题型:
【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
为正项等比数列,
为
的前
项和,若
,
.
(1)求数列
的通项公式;
(2)从三个条件:①
;②
;③
中任选一个作为已知条件,求数列
的前
项和
.
注:如果选择多个条件分别解答,按第一个解答计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全民抗击新冠肺炎疫情期间,北京市开展了“停课不停学”活动,此活动为学生提供了多种网络课程资源以供选择使用.活动开展一个月后,某学校随机抽取了高三年级的甲、乙两个班级进行网络问卷调查,统计学生每天的学习时间,将样本数据分成
五组,并整理得到如下频率分布直方图:
![]()
(1)已知该校高三年级共有600名学生,根据甲班的统计数据,估计该校高三年级每天学习时间达到5小时及以上的学生人数;
(2)已知这两个班级各有40名学生,从甲、乙两个班级每天学习时间不足4小时的学生中随机抽取3人,记从甲班抽到的学生人数为
,求
的分布列和数学期望;
(3)记甲、乙两个班级学生每天学习时间的方差分别为
,
,试比较
与
的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国电子商务行业迎来了蓬勃发展的新机遇,但是电子商务行业由于缺乏监管,服务质量有待提高.某部门为了对本地的电商行业进行有效监管,调查了甲、乙两家电商的某种同类产品连续十天的销售额(单位:万元),得到如下茎叶图:
![]()
(1)根据茎叶图判断甲、乙两家电商对这种产品的销售谁更稳定些?
(2)如果日销售额超过平均销售额,相应的电商即被评为优,根据统计数据估计两家电商一个月(按30天计算)被评为优的天数各是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在区间
单调递增,下述三个结论:①
的取值范围是
;②
在
存在零点;③
在
至多有4个极值点.其中所有正确结论的编号是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,椭圆
的右准线为直线
,左顶点为
,右焦点为
. 已知斜率为2的直线
经过点
,与椭圆
相交于
两点,且
到直线
的距离为
![]()
(1)求椭圆
的标准方程;
(2)若过
的直线
与直线
分别相交于
两点,且
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com