精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求的单调区间;

)若都属于区间,求实数的取值范围.

【答案】)当时,上单调递增,当时,上单调递增,在上单调递减;(

【解析】

试题第一问对函数求导,结合参数的范围,确定出导数的符号,从而求得函数的单调性,第二问有两个自变量对应的函数值相等,从函数的单调区间出发,来研究对应的单调性,从而确定出参数所满足的不等关系,最后求得结果.

试题解析:(

时,上恒成立,则上单调递增;

时,由; 由

上单调递增,在上单调递减;

综上,当时,上单调递增;

时,上单调递增,在上单调递减.

)由()知,当时,上单增,不合题意,故

,即

上恒成立;所以上递增,

式,函数有零点,则

故实数的取值范围为12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为正项等比数列,的前项和,若

1)求数列的通项公式;

2)从三个条件:①;②;③中任选一个作为已知条件,求数列的前项和

注:如果选择多个条件分别解答,按第一个解答计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全民抗击新冠肺炎疫情期间,北京市开展了停课不停学活动,此活动为学生提供了多种网络课程资源以供选择使用.活动开展一个月后,某学校随机抽取了高三年级的甲、乙两个班级进行网络问卷调查,统计学生每天的学习时间,将样本数据分成五组,并整理得到如下频率分布直方图:

1)已知该校高三年级共有600名学生,根据甲班的统计数据,估计该校高三年级每天学习时间达到5小时及以上的学生人数;

2)已知这两个班级各有40名学生,从甲、乙两个班级每天学习时间不足4小时的学生中随机抽取3人,记从甲班抽到的学生人数为,求的分布列和数学期望;

3)记甲、乙两个班级学生每天学习时间的方差分别为,试比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最小值;

2)若,讨论的单调性;

3)若上的最小值,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务行业迎来了蓬勃发展的新机遇,但是电子商务行业由于缺乏监管,服务质量有待提高.某部门为了对本地的电商行业进行有效监管,调查了甲、乙两家电商的某种同类产品连续十天的销售额(单位:万元),得到如下茎叶图:

1)根据茎叶图判断甲、乙两家电商对这种产品的销售谁更稳定些?

2)如果日销售额超过平均销售额,相应的电商即被评为优,根据统计数据估计两家电商一个月(按30天计算)被评为优的天数各是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间单调递增,下述三个结论:①的取值范围是;②存在零点;③至多有4个极值点.其中所有正确结论的编号是( )

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的右准线为直线,左顶点为,右焦点为. 已知斜率为2的直线经过点,与椭圆相交于两点,且到直线的距离为

1)求椭圆的标准方程;

2)若过的直线与直线分别相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(Ⅰ)若,解不等式

(Ⅱ)当时,函数的最小值为,求实数的值.

查看答案和解析>>

同步练习册答案