【题目】己知椭圆W:
+
=1(a>b>0),直线
:
=
与
轴,
轴的交点分别是椭圆W的焦点与顶点。
![]()
(1)求椭圆W的方程;
(2)设直线m:
=kx(k≠0)与椭圆W交于P,Q两点,过点P(
,
)作PC⊥轴,垂足为点C,直线
交椭圆w于另一点R。
①求△PCQ面积的最大值;②求出∠QPR的大小。
【答案】(1)
;(2)①
,②90
.
【解析】
(1)由题意求出c,b,进而得到椭圆W的方程;
(2)①设P(
,
),则Q(
,
),C(
,0),可知S
,利用点在椭圆上及均值不等式即可得到△PCQ面积的最大值;②设P(
,
),则Q(
,
),C(
,0),k=
,直线QR的斜率
,直线QR的方程:
(
)与椭圆方程联立可得(2+
)2-2
,求得R点坐标,进而得到
即可得到结果.
(1)直线
:
与
轴,
轴的交点分别(
,0),(0,
),
可知c=
,
,椭圆W的方程
。
(2)①设P(
,
),则Q(
,
),C(
,0),可知S
,
有已知可知
,根据重要不等式得
,S
,
当且仅当
或
时,面积取得最大值
。
②设P(
,
),则Q(
,
),C(
,0),k=
。
直线QR的斜率
。
可得直线QR的方程:
(
),设点R(
,
),
联立
消去
得(2+
)2-2
,
则
,解得
,所以
,点R(
,
)。
因为
,所以
,所以∠QPR=90°。
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|
)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 |
| π |
| 2π |
x |
|
| |||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(
,0),求θ的最小值.
(3)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是正方体的平面展开图,在这个正方体中,正确的命题是( )
![]()
A. BD与CF成60°角 B. BD与EF成60°角 C. AB与CD成60°角 D. AB与EF成60°角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,
,则下列结论正确的是( )
A. 把
上所有的点向右平移
个单位长度,再把所有图象上各点的横坐标缩短到原来的
倍(纵坐标不变),得到曲线![]()
B. 把
上所有点向左平移
个单位长度,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线![]()
C. 把
上各点的横坐标缩短到原来的
倍(纵坐标不变),再把所得图象上所有的点向左平移
个单位长度,得到曲线![]()
D. 把
上各点的横坐标伸长到原来的3倍(纵坐标不变),再把所得图象上所有的点向左平移
个单位长度,得到曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
,在梯形
中,
于
,
.将
沿
折起至
,使得平面
平面
(如图2),
为线段
上一点.
![]()
图1 图2
(Ⅰ)求证:
;
(Ⅱ)若
为线段
中点,求多面体
与多面体
的体积之比;
(Ⅲ)是否存在一点
,使得
平面
?若存在,求
的长.若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩,现有甲、乙两位同学的20次成绩如茎叶图所示:
![]()
(1)根据茎叶图求甲、乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;
(2)现从甲、乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件
为“其中2个成绩分别属于不同的同学”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率与双曲线
的离心率互为倒数,且过点
.
(1)求椭圆C的方程;
(2)过
作两条直线
与圆
相切且分别交椭圆于M、N两点.
① 求证:直线MN的斜率为定值;
② 求△MON面积的最大值(其中O为坐标原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com