【题目】若存在常数
,使得对定义域
内的任意
,都有
成立,则称函数
在其定义域
上是“
利普希兹条件函数”.
(1)若函数
是“
利普希兹条件函数”,求常数
的最小值;
(2)判断函数
是否是“
利普希兹条件函数”,若是,请证明,若不是,请说明理由;
(3)若
是周期为2的“
利普希兹条件函数”,证明:对任意的实数
,都有
.
【答案】(1)
;(2)不是,理由见解析;(3)证明见解析.
【解析】试题分析:(1)不妨设
,则
恒成立.
,从而可得结果;(2)令
,则
,从而可得函数
不是“
利普希兹条件函数”; (3)设
的最大值为
,最小值为
,在一个周期
,内
,利用基本不等式的性质可证明
.
试题解析:(1)若函数f(x)=
,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,
不妨设x1>x2,则k≥
=
恒成立.
∵1≤x2<x1≤4,∴
<
<
,
∴k的最小值为
.
(2)f(x)=log2x的定义域为(0,+∞),
令x1=
,x2=
,则f(
)﹣f(
)=log2
﹣log2
=﹣1﹣(﹣2)=1,
而2|x1﹣x2|=
,∴f(x1)﹣f(x2)>2|x1﹣x2|,
∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.
(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,
则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.
若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.
若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,
∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.
综上,|f(x1)﹣f(x2)|≤1.
科目:高中数学 来源: 题型:
【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入的
分别为16,20,则输出的
( )
![]()
A. 0B. 2C. 4D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
、
分别是椭圆短轴的上下两个端点;
是椭圆的左焦点,P是椭圆上异于点
、
的点,
是边长为4的等边三角形.
(1)写出椭圆的标准方程;
(2)设点R满足:
,
.求证:
与
的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
,
,且
,点
是
中点,现将
沿
折起,使点
到达点
的位置.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若
与平面
所成的角为
,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线上一动点P(x,y)(x>0)到定点F(
,0)的距离与它到直线l:x
的距离的比是
.
(1)求动点P的轨迹E的方程;
(2)若M是曲线E上的一个动点,直线l′:y=x+4,求点M到直线l′的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的上、下焦点分别为
,
,右顶点为B,且满足![]()
Ⅰ
求椭圆的离心率e;
Ⅱ
设P为椭圆上异于顶点的点,以线段PB为直径的圆经过点
,问是否存在过
的直线与该圆相切?若存在,求出其斜率;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度
(单位:cm)的情况如表1:
| 900 | 700 | 300 | 100 |
| 0.5 | 3.5 | 6.5 | 9.5 |
该省某市2017年11月份AQI指数频数分布如表2:
|
|
|
|
|
|
频数(天) | 3 | 6 | 12 | 6 | 3 |
<>(1)设
(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI指数存在相关关系如表3:
|
|
|
|
|
|
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
根据表3估计小李的洗车店2017年11月份每天的平均收入.
附参考公式:
,其中
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com