精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的顶点在坐标原点,其焦点轴正半轴上,为直线上一点,圆轴相切(为圆心),且关于点对称.

(1)求圆和抛物线的标准方程;

(2)过的直线交圆两点,交抛物线两点,求证:.

【答案】(1)的标准方程为.的标准方程为(2)见证明

【解析】

(1)根据题意可得,解得a、p,即可求出圆与抛物线的标准方程,

(2)设l的斜率为k,那么其方程为ykx+2),根据韦达定理和弦长公式即可证明.

(1)设抛物线的标准方程为,则焦点的坐标为.

已知在直线上,故可设

因为关于对称,所以,解得

所以的标准方程为.

因为轴相切,故半径

所以的标准方程为.

(2)由(1)知,直线的斜率存在,设为,且方程为

到直线的距离为

所以

消去并整理得:.

,则.

所以

因为,所以

所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术·商功》:斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”下图解释了这段话中由一个长方体,得到堑堵阳马鳖臑的过程.已知堑堵的内切球(与各面均相切直径1,则鳖臑的体积最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:

将收看该节目场次不低于13场的观众称为歌迷,已知歌迷中有10名女性.

1)根据已知条件完成下面的2×2列联表

2)此资料我们能否有95%的把握认为歌迷与性别有关?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知元集合的一些子集满足:每个子集至少含2个元素,每两个不同子集的交集至多含2个元素,记这些子集的元素个数的立方和为.问:是否存在不小于3的正整数,使的最大值等于2009的方幂说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期低于平均数的患者,称为短潜伏者,潜伏期不低于平均数的患者,称为长潜伏者”.

1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中长潜伏者的人数;

2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关;

短潜伏者

长潜伏者

合计

60岁及以上

90

60岁以下

140

合计

300

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人在某个节日期间互通电话问候,已知其中每个人至多打通了三个朋友家的电话,任何两个人之间至多进行一次通话,且任何三个人中至少有两人,其中一个人打通了另一个人家里的电话,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个半径为r的小球与一个半径为R的大球在一个内壁棱长为l的正四面体容器内向各个方向自由运动则该小球永远不可能接触到的容器内壁的面积是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图,四棱锥的底面为菱形,平面

分别为的中点,

)求证:平面平面

)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案