精英家教网 > 高中数学 > 题目详情
定义在R上奇函数f(x),当x<0时的解析式为f(x)=-ln(-x)+x+2,若该函数有一零点为x0,且x0∈(n,n+1),n为正整数,则n的值为
1
1
分析:由函数是奇函数,可得x>0的表达式,然后利用根的存在性定理进行判断.
解答:解:设x>0,则-x<0,所以f(-x)=-lnx-x+2,
因为函数为奇函数,所以f(-x)=-lnx-x+2=-f(x),
所以f(x)=lnx+x-2.
因为f(1)=ln1+1-2=-1<0,f(2)=ln2+2-2=ln2>0,所以在(1,2)内存在一个零点,
所以n=1.
故答案为:1.
点评:本题主要考查函数奇偶性的应用,以及函数零点的判断,利用根的存在性定理是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上奇函数f(x)在x≥0时的图象如图所示,
(1)补充完整f(x)在x≤0的函数图象;
(2)写出f(x)的单调区间;
(3)根据图象写出不等式xf(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上奇函数f(x),f(x+2)=
1-f(x)
1+f(x)
,则f(2010)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上奇函数f(x)满足:f(2)=0,当x>0时有xf′(x)<f(x)成立,则不等式x2f(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上奇函数f(x)满足:当x∈(-∞,0)时,不等式f(x)+xf′(x)<0,若a=20.2f(20.2),b=ln2f(ln2),c=log2
1
4
f(log2
1
4
),则a,b,c
由小到大关系式为
 

查看答案和解析>>

同步练习册答案