精英家教网 > 高中数学 > 题目详情
已知函数f(x)=㏒ax(a>0且a≠1),若数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列
(1)求数列{a n}的通项a n
(2)令b n=anf(an),当a>1时,判断数列{bn}的单调性并证明你的结论.
分析:(1)先弄清数列2,f(a1),f(a2),…,f(an),2n+4的项数,然后根据等差数列的通项公式求出d的值,从而求出数列{an}的通项;
(2)将an代入函数的解析式求出的bn通项公式,然后根据条件判定bn+1-bn的符号,从而得到数列{b n}的单调性.
解答:(1)解:∵数列2,f(a 1),f(a 2),…,f(a n),2n+4(n∈N*)成等差数列
∴2n+4=2+(n+1)d,∴d=2,
∴f(an)=2+2n=logaan
∴an=a2n+2
(2)数列{b n}单调递增
证明:∵b n=anf(an),
∴bn=(2n+2)a2n+2
则bn+1=(2n+4)a2n+4
∴bn+1-bn=(2n+4)a2n+4-(2n+2)a2n+2=a2n+2[(2n+4)a2-(2n+2)]
∵a>1
∴a2>1
∴(2n+4)a2-(2n+2)>(2n+4)-(2n+2)=2>0
∴bn+1-bn>0即数列{b n}单调递增.
点评:本题主要考查了数列的通项公式,以及数列与不等式的综合和数列的函数特性,同时考查了计算能力和转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案