精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点EFEF=,则下列结论中错误的是(

A.ACBEB.EF平面ABCD

C.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值

【答案】D

【解析】

A.通过线面的垂直关系可证真假;B.根据线面平行可证真假;C.根据三棱锥的体积计算的公式可证真假;D.根据列举特殊情况可证真假.

A.因为,所以平面

又因为平面,所以,故正确;

B.因为,所以,且平面平面

所以平面,故正确;

C.因为为定值,到平面的距离为

所以为定值,故正确;

D.当,取,如下图所示:

因为,所以异面直线所成角为

,取,如下图所示:

因为,所以四边形是平行四边形,所以

所以异面直线所成角为,且

由此可知:异面直线所成角不是定值,故错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着六种不同生肖图案(包含马、羊)的毛绒娃娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这六个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体,平面平面的中点,上的点.

)若平面,证明:的中点;

(Ⅱ)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,,沿对角线折起,使点到达平面外的点的位置,

1)求证:平面平面

2)当平面平面时,求三棱锥的外接球的体积;

3)当为等腰三角形时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E-ABCD中,底面ABCD为正方形,平面CDE.已知

1)证明:平面平面ABCD

(2)求直线BE与平面ACE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,点和点,动点满足:.

1)求动点的轨迹曲线的方程并说明是何种曲线;

2)若抛物线的焦点恰为曲线的顶点,过点的直线与抛物线交于两点,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当.

①求函数处的切线方程;

②定义其中,求

2)当时,设(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案