【题目】如图,在四棱锥
中,底面
为等腰梯形,
,其中点
在以
为直径的圆上,
,
,
,平面
平面
.
![]()
(1)证明:
平面
.
(2)设点
是线段
(不含端点)上一动点,当三棱锥
的体积为1时,求异面直线
与
所成角的余弦值.
【答案】(1)详见解析;(2)
.
【解析】
(1)利用余弦定理,由勾股定理可得
,再根据面面垂直的性质可得
平面
;(2)设
,则
,由
,解得
,即点
是线段
的中点. 取
的中点为
,连接
,可证明四边形
为平行四边形,从而
,且
,可得
为异面直线
与
所成角(或补角),再利用余弦定理可得结果.
![]()
(1)连接
,
,因为点
在以
为直径的圆上,所以
.
因为
,所以
,
.
所以
.
因为
为等腰梯形,
,
所以
.
又因为
,
,
所以
,从而得
.
又因为平面
平面
,平面
平面
,
所以
平面
.
(2)由(1)得
,
设
,则
,
所以
,解得
,
即点
是线段
的中点.
取
的中点为
,连接
,则由(1)及条件得
,且
,
所以四边形
为平行四边形,从而
,且
,
所以
为异面直线
与
所成角(或补角).
因为
,所以
.
因为
,所以
,
所以
,
所以
,
即异面直线
与
所成角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,O坐标原点,从直线y
x+1上的一点
作x轴的垂线,垂足记为Q1,过Q1作OP1的平行线,交直线y
x+1于点
,再从P2作x轴的垂线,垂足记为Q2,依次重复上述过程得到一系列点:P1,Q1,P2,Q2,…,Pn,Qn,记Pk点的坐标为
,k=1,2,3,…,n,现已知x1=2.
![]()
(1)求Q2、Q3的坐标;
(2)试求xk(1≤k≤n)的通项公式;
(3)点Pn、Pn+1之间的距离记为|PnPn+1|(n∈N*),是否存在最小的正实数t,使得
t对一切的自然数n恒成立?若存在,求t的值,若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线l:y=2x﹣1与双曲线
(
,
)相交于A、B两个不
同的点,且
(O为原点).
(1)判断
是否为定值,并说明理由;
(2)当双曲线离心率
时,求双曲线实轴长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线
,直线
:
(
为参数).
(I)写出曲线
的参数方程,直线
的普通方程;
(II)过曲线
上任意一点
作与
夹角为
的直线,交
于点
,
的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
![]()
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某地区2000年至2016年环境基础设施投资额
(单位:亿元)的折线图.
![]()
为了预测该地区2018年的环境基础设施投资额,建立了
与时间变量
的两个线性回归模型.根据2000年至2016年的数据(时间变量
的值依次为1,2,…,17)建立模型
①
;
根据2010年至2016年的数据(时间变量
的值依次为1,2,…,7)建立模型
②
.
利用这两个模型,该地区2018年的环境基础设施投资额的预测值分别为_____,_____;并且可以判断利用模型_____得到的预测值更可靠.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com