【题目】已知函数
,
.
(1)求
的极值;
(2)若方程
有三个解,求实数
的取值范围.
【答案】(1)当
时,极小值
;当
时,无极值;当
时,极大值
;(2)![]()
【解析】
(1)求得
的定义域和导函数,对
分成
三种情况进行分类讨论
的极值.
(2)构造函数
,通过
的导函数
研究
的零点,对
分成
进行分类讨论,结合
有三个零点,求得
的取值范围.
(1)
的定义域为
,
,
当
时,
在
上递减,在
上递增,所以
在
处取得极小值
,
当
时,
,所以无极值,
当
时,
在
上递增,在
上递减,所以
在
处取得极大值
.
(2)设
,即
,
![]()
![]()
.
①若
,则当
时,
,
单调递减,当
时,
,
单调递增,
至多有两个零点.
②若
,则
,
(仅
).
单调递增,
至多有一个零点.
③若
,则
,当
或
时,
,
单调递增;当
时,
,
单调递减,要使
有三个零点,必须有
成立.
由
,得
,这与
矛盾,所以
不可能有三个零点.
④若
,则
.当
或
时,
,
单调递增;当
时,
,
单调递减,要使
有三个零点,必须有
成立,
由
,得
,由
及
,得
,
.
并且,当
时,
,
,![]()
,
.
综上,使
有三个零点的
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )
![]()
![]()
A.除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的
倍.
B.所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .
C.第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.
D.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线
的参数方程为
(
是参数),以原点为极点,
轴的非负半轴
为极轴,建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设点
在曲线
上,曲线
在点
处的切线与直线
垂直,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某果园今年的脐橙丰收了,果园准备利用互联网销售.为了更好的销售,现随机摘下了
个脐橙进行测重,其质量分布在区间
内(单位:克),统计质量的数据作出频率分布直方图如下图所示:
![]()
(1)按分层抽样的方法从质量落在
,
的脐橙中随机抽取
个,再从这
个脐橙中随机抽
个,求这
个脐橙质量都不小于
克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该果园的脐橙树上大约还有
个脐橙待出售,某电商提出两种收购方案:甲:所有脐橙均以
元/千克收购;乙:低于
克的脐橙以
元/个收购,高于或等于
克的以
元/个收购.请通过计算为该果园选择收益最好的方案.
(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的奇数项是公差为
的等差数列,偶数项是公差为
的等差数列,
是数列
的前
项和, ![]()
(1)若
,求
;
(2)已知
,且对任意的
,有
恒成立,求证:数列
是等差数列;
(3)若
,且存在正整数
,使得
,求当
最大时,数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司准备上市一款新型轿车零配件,上市之前拟在其一个下属4S店进行连续30天的试销.定价为1000元/件.试销结束后统计得到该4S店这30天内的日销售量(单位:件)的数据如下表:
日销售量 | 40 | 60 | 80 | 100 |
频数 | 9 | 12 | 6 | 3 |
(1)若该4S店试销期间每个零件的进价为650元/件,求试销连续30天中该零件日销售总利润不低于24500元的频率;
(2)试销结束后,这款零件正式上市,每个定价仍为1000元,但生产公司对该款零件不零售,只提供零件的整箱批发,大箱每箱有60件,批发价为550元/件;小箱每箱有45件,批发价为600元/件.该4S店决定每天批发两箱,根据公司规定,当天没销售出的零件按批发价的9折转给该公司的另一下属4S店.假设该4店试销后的连续30天的日销售量(单位:件)的数据如下表:
日销售量 | 50 | 70 | 90 | 110 |
频数 | 5 | 15 | 8 | 2 |
(ⅰ)设该4S店试销结束后连续30天每天批发两大箱,这30天这款零件的总利润;
(ⅱ)以总利润作为决策依据,该4S店试销结束后连续30天每天应该批发两大箱还是两小箱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线
与圆
相交于不同的两点
,
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com