精英家教网 > 高中数学 > 题目详情

【题目】具有性质:的函数,我们称为满足倒负变换的函数。给出下列函数:

其中满足倒负变换的函数是()

A. ①② B. ①③ C. ②③ D.

【答案】C

【解析】

利用题中的新定义,对各个函数进行判断是否具有f()=﹣f(x),判断出是否满足“倒负”变换,即可得答案.

①f()=ln=ln≠﹣f(x),

不满足“倒负”变换的函数;

②f()===﹣=﹣f(x),

满足“倒负”变换的函数;

对于,当0<x<1时,>1,f(x)=x,f()=﹣x=﹣f(x);

当x1时,0<1,f(x)=﹣,f()=﹣f(x);

当x=1时,=1,f(x)=0,f()=f(1)=0=﹣f(x),

满足“倒负”变换的函数;

综上:②③是符合要求的函数;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程,其中

(I)若随机选自集合随机选自集合,求方程有实根的概率;

)若随机选自区间随机选自区间,求方程有实根的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切.

(1)求圆的方程;

(2)求直线截圆所得弦的长;

(3)过点作两条直线与圆相切,切点分别为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示,分别是图象的最低点和最高点,.

(1)求函数的解析式;

(2)将函数的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心率为

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线轴交于点,与椭圆交于两个不同的点,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形, .

(1)求证: 平面

(2)线段上是否存在一点,使得 ?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)若函数的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在路边安装路灯,路宽为,灯柱长为米,灯杆长为1米,且灯杆与灯柱成角,路灯采用圆锥形灯罩,其轴截面的顶角为,灯罩轴线与灯杆垂直.

⑴设灯罩轴线与路面的交点为,若米,求灯柱长;

⑵设米,若灯罩截面的两条母线所在直线一条恰好经过点,另一条与地面的交点为(如图2)

(图1) (图2)

(ⅰ)求的值;(ⅱ)求该路灯照在路面上的宽度的长.

查看答案和解析>>

同步练习册答案