【题目】已知函数
的部分图象如图所示,
分别是图象的最低点和最高点,
.
![]()
(1)求函数
的解析式;
(2)将函数
的图象向左平移
个单位长度,再把所得图象上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数
的图象,求函数
的单调递增区间.
科目:高中数学 来源: 题型:
【题目】已知两点
及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设
是过原点的直线,
是与n垂直相交于
点,与椭圆相交于
两点的直线,
,是否存在上述直线
使
成立?若存在,求出直线
的方程;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2,考查每行中五个数之和,记这五个和的最小值为
,则
的最大值为( )
A.
B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
:
与
轴相交于点
,点
坐标为
,过点
作直线
的垂线,交直线
于点
.记过
、
、
三点的圆为圆
.
(1)求圆
的方程;
(2)求过点
与圆
相交所得弦长为8的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】具有性质:
的函数,我们称为满足“倒负”变换的函数。给出下列函数:
①
②
③
其中满足“倒负”变换的函数是()
A. ①② B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是定义在
上的奇函数,且
,若
且
时,有
成立.
(1)判断
在
上的单调性,并用定义证明;
(2)解不等式
;
(3)若
对所有的
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线
的焦点
,斜率为
的直线交抛物线于
两点,且
.
(1)求该抛物线
的方程;
(2)过点
任意作互相垂直的两条直线
,分别交曲线
于点
和
.设线段
的中点分别为
,求证:直线
恒过一个定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com