【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)当
时,判断直线
与曲线
的位置关系;
(2)若直线
与曲线
相交所得的弦长为
,求
的值.
科目:高中数学 来源: 题型:
【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主
创业,该专营店统计了近五年来创收利润数
(单位:万元)与时间
(单位:年)的数据,列表如下:
| 1 | 2 | 3 | 4 | 5 |
| 2.4 | 2.7 | 4.1 | 6.4 | 7.9 |
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合
与
的关系,请计算相关系数
并加以说明(计算结果精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合):
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满500元可减50元;
方案二:每满500元可抽奖一次,每次中奖的概率都为
,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.
②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由
附:相关系数公式![]()
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某小区有一块矩形地块
,其中
,
,单位:百米.已知
是一个游泳池,计划在地块
内修一条与池边
相切于点
的直路
(宽度不计),交线段
于点
,交线段
于点
.现以点
为坐标原点,以线段
所在直线为
轴,建立平面直角坐标系,若池边
满足函数
的图象,若点
到
轴距离记为
.
![]()
(1)当
时,求直路所在的直线方程;
(2)当
为何值时,地块
在直路
不含泳池那侧的面积取到最大,最大值时多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图数据如图.根据茎叶图,下列描述正确的是( )
![]()
A.甲种树苗的中位数大于乙种树苗的中位数,且甲种树苗比乙种树苗长得整齐
B.甲种树苗的中位数大于乙种树苗的中位数,但乙种树苗比甲种树苗长得整齐
C.乙种树苗的中位数大于甲种树苗的中位数,且乙种树苗比甲种树苗长得整齐
D.乙种树苗的中位数大于甲种树苗的中位数,但甲种树苗比乙种树苗长得整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济的发展和人民生活水平的提高,以及城市垃圾分类收集的实施和推广,我国居民生活垃圾的平均热值逐年.上升,垃圾焚烧发电的吨上网电量(单位:千瓦时/吨)显著增加.下表为某垃圾焚烧发电厂最近五个月的生产数据.
月份代码 |
|
|
|
|
|
吨上网电量 |
|
|
|
|
|
|
|
|
|
|
|
若从该发电厂这五个月的生产数据(吨上网电量)中任选两个,求其中至少有一个生产数据超过
的概率;
通过散点图(如图)可以发现,变量
与
之间的关系可以用函数
(其中
为自然对数的底数)来拟合,求常数
,
的值.
![]()
参考公式:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘估计公式分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)求
在点P(1,
)处的切线方程;
(2)若关于x的不等式
有且仅有三个整数解,求实数t的取值范围;
(3)若
存在两个正实数
,
满足
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了调查学生数学素养的情况,从初中部、高中部各随机抽取100名学生进行测试.初中部的100名学生的成绩(单位:分)的频率分布直方图如图所示.
![]()
高中部的100名学生的成绩(单位:分)的频数分布表如下:
测试分数 |
|
|
|
|
|
频数 | 5 | 20 | 35 | 25 | 15 |
把成绩分为四个等级:60分以下为
级,60分(含60)到80分为
级,80分(含80)到90分为
级,90分(含90)以上为
级.
(1)根据已知条件完成下面的
列联表,据此资料你是否有99%的把握认为学生数学素养成绩“
级”与“所在级部”有关?
不是 |
| 合计 | |
初中部 | |||
高中部 | |||
合计 |
注:
,其中
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(2)若这个学校共有9000名高中生,用频率估计概率,用样本估计总体,试估计这个学校的高中生的数学素养成绩为
级的人数,并估计数学素养成绩的平均分(用组中值代表本组分数);
(3)把初中部的
级同学编号为
,
,
,
,
,高中部的
级同学编号为
,
,
,
,
,从初中部
级、高中部
级中各选一名同学,求这两名同学的编号奇偶性相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
为参数),在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点,求点
到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com