【题目】已知函数
,
.
(1)若
存在极小值,求实数
的取值范围;
(2)设
是
的极小值点,且
,证明:
.
【答案】(1)
.(2)见解析.
【解析】
(1)先求得导函数,根据定义域为
,可构造函数
,通过求导及分类讨论,即可求得
的取值范围。
(2)由(1)令
,通过分离参数得
,同时求对数,根据函数
,可得
。构造函数
及
,由导数即可判断
的单调情况,进而求得
的最小值,结合
即可证明不等式成立。
(1)
.
令
,
则
,
所以
在
上是增函数.
又因为当
时,
;
当
时,
.
所以,当
时,
,
,函数
在区间
上是增函数,不存在极值点;
当
时,
的值域为
,
必存在
使
.
所以当
时,
,
,
单调递减;
当
时,
,
,
单调递增;
所以
存在极小值点.
综上可知实数
的取值范围是
.
(2)由(1)知
,即
.
所以
,
.
由
,得
.
令
,显然
在区间
上单调递减.
又
,所以由
,得
.
令
,
,
当
时,
,函数
单调递增;
当
时,
,函数
单调递减;
所以,当
时,函数
取最小值
,
所以
,即
,即
,
所以
,
,
所以
,
即
.
科目:高中数学 来源: 题型:
【题目】已知数列
、
,其中,
,数列
满足
,
,数列
满足
.
(1)求数列
、
的通项公式;
(2)是否存在自然数
,使得对于任意
有
恒成立?若存在,求出
的最小值;
(3)若数列
满足
,求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年初,新冠肺炎疫情袭击全国,某省由于人员流动性较大,成为湖北省外疫情最严重的省份之一,截至2月29日,该省已累计确诊1349例患者(无境外输入病例).
(1)为了解新冠肺炎的相关特征,研究人员从该省随机抽取100名确诊患者,统计他们的年龄数据,得下面的频数分布表:
年龄 |
|
|
|
|
|
|
|
|
|
人数 | 2 | 6 | 12 | 18 | 22 | 22 | 12 | 4 | 2 |
由频数分布表可以大致认为,该省新冠肺炎患者的年龄
服从正态分布img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/11/70cd3e4c/SYS202005251112216152234742_ST/SYS202005251112216152234742_ST.011.png" width="80" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,其中
近似为这100名患者年龄的样本平均数(同一组中的数据用该组区间的中点值作代表).请估计该省新冠肺炎患者年龄在70岁以上(
)的患者比例;
(2)截至2月29日,该省新冠肺炎的密切接触者(均已接受检测)中确诊患者约占10%,以这些密切接触者确诊的频率代替1名密切接触者确诊发生的概率,每名密切接触者是否确诊相互独立.现有密切接触者20人,为检测出所有患者,设计了如下方案:将这20名密切接触者随机地按
(
且
是20的约数)个人一组平均分组,并将同组的
个人每人抽取的一半血液混合在一起化验,若发现新冠病毒,则对该组的
个人抽取的另一半血液逐一化验,记
个人中患者的人数为
,以化验次数的期望值为决策依据,试确定使得20人的化验总次数最少的
的值.
参考数据:若
,则
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产了
两种产品投放市场,计划每年对这两种产品托人200万元,每种产品一年至少投入20万元,其中
产品的年收益
,
产品的年收益
与投入
(单位万元)分别满足
;若公司有100名销售人员,按照对两种产品的销售业绩分为普销售、中级销售以及金牌销售,其中普销售28人,中级销售60人,金牌销售12人
(1)为了使
两种产品的总收益之和最大,求
产品每年的投入
(2)为了对表现良好的销售人员进行奖励,公司制定了两种奖励方案:
方案一:按分层抽样从三类销售中总共抽取25人给予奖励:普通销售奖励2300元,中级销售奖励5000元;金牌销售奖励8000元
方案二:每位销售都参加摸奖游戏,游戏规则:从一个装有3个白球,2个红球(求只有颜色不同)的箱子中,有放回地莫三次球,每次只能摸一只球.若摸到红球的总数为2,则可奖励1500元,若摸到红球总数是3,则可获得奖励3000元,其他情况不给予奖励,规定普通销售均可参加1次摸奖游戏;中级销售均可参加2次摸奖游戏,金牌销售均可参加3次摸奖游戏(每次摸奖的结果相互独立,奖励叠加)
(ⅰ)求方案一奖励的总金额;
(ⅱ)假设你是企业老板,试通过计算并结合实际说明,你会选择哪种方案奖励销售员.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个数列
,在这个数列里,任取
项,并且不改变它们在数列
中的先后次序,得到的数列称为数列
的一个
阶子数列.
已知数列
的通项公式为
(
为常数),等差数列
是
数列
的一个3阶子数列.
(1)求
的值;
(2)等差数列
是
的一个
阶子数列,且
(
为常数,
,求证:
;
(3)等比数列
是
的一个
阶子数列,
求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.
![]()
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点
,焦点在
轴上,离心率为
的椭圆过点![]()
![]()
(1)求椭圆的方程;
(2)设不过原点
的直线
与该椭圆交于
两点,满足直线
的斜率依次成等比数列,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题
方程
表示双曲线;命题
不等式
的解集是
.
为假,
为真,求
的取值范围.
【答案】![]()
【解析】试题分析:由命题
方程
表示双曲线,求出
的取值范围,由命题
不等式
的解集是
,求出
的取值范围,由
为假,
为真,得出
一真一假,分两种情况即可得出
的取值范围.
试题解析:
真 ![]()
,
真
或
![]()
∴![]()
真
假 ![]()
假
真 ![]()
∴
范围为![]()
【题型】解答题
【结束】
18
【题目】如图,设
是圆
上的动点,点
是
在
轴上的投影,
为
上一点,且
.
![]()
(1)当
在圆上运动时,求点
的轨迹
的方程;
(2)求过点
且斜率为
的直线被
所截线段的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com