精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

【答案】(1) .(2)见解析.

【解析】

1)先求得导函数,根据定义域为,可构造函数,通过求导及分类讨论,即可求得的取值范围。

2)由(1)令,通过分离参数得,同时求对数,根据函数,可得。构造函数,由导数即可判断的单调情况,进而求得的最小值,结合即可证明不等式成立。

1.

所以上是增函数.

又因为当时,

时,.

所以,当时,,函数在区间上是增函数,不存在极值点;

时,的值域为

必存在使.

所以当时,单调递减;

时,单调递增;

所以存在极小值点.

综上可知实数的取值范围是.

2)由(1)知,即.

所以

.

,得.

,显然在区间上单调递减.

,所以由,得.

时,,函数单调递增;

时,,函数单调递减;

所以,当时,函数取最小值

所以,即,即

所以

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列,其中, ,数列满足,数列满足

(1)求数列的通项公式;

(2)是否存在自然数,使得对于任意恒成立?若存在,求出的最小值;

(3)若数列满足求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年初,新冠肺炎疫情袭击全国,某省由于人员流动性较大,成为湖北省外疫情最严重的省份之一,截至229日,该省已累计确诊1349例患者(无境外输入病例).

1)为了解新冠肺炎的相关特征,研究人员从该省随机抽取100名确诊患者,统计他们的年龄数据,得下面的频数分布表:

年龄

人数

2

6

12

18

22

22

12

4

2

由频数分布表可以大致认为,该省新冠肺炎患者的年龄服从正态分布img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/11/70cd3e4c/SYS202005251112216152234742_ST/SYS202005251112216152234742_ST.011.png" width="80" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,其中近似为这100名患者年龄的样本平均数(同一组中的数据用该组区间的中点值作代表).请估计该省新冠肺炎患者年龄在70岁以上()的患者比例;

2)截至229日,该省新冠肺炎的密切接触者(均已接受检测)中确诊患者约占10%,以这些密切接触者确诊的频率代替1名密切接触者确诊发生的概率,每名密切接触者是否确诊相互独立.现有密切接触者20人,为检测出所有患者,设计了如下方案:将这20名密切接触者随机地按20的约数)个人一组平均分组,并将同组的个人每人抽取的一半血液混合在一起化验,若发现新冠病毒,则对该组的个人抽取的另一半血液逐一化验,记个人中患者的人数为,以化验次数的期望值为决策依据,试确定使得20人的化验总次数最少的的值.

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产了两种产品投放市场,计划每年对这两种产品托人200万元,每种产品一年至少投入20万元,其中产品的年收益产品的年收益与投入(单位万元)分别满足;若公司有100名销售人员,按照对两种产品的销售业绩分为普销售、中级销售以及金牌销售,其中普销售28人,中级销售60人,金牌销售12

1)为了使两种产品的总收益之和最大,求产品每年的投入

2)为了对表现良好的销售人员进行奖励,公司制定了两种奖励方案:

方案一:按分层抽样从三类销售中总共抽取25人给予奖励:普通销售奖励2300元,中级销售奖励5000元;金牌销售奖励8000

方案二:每位销售都参加摸奖游戏,游戏规则:从一个装有3个白球,2个红球(求只有颜色不同)的箱子中,有放回地莫三次球,每次只能摸一只球.若摸到红球的总数为2,则可奖励1500元,若摸到红球总数是3,则可获得奖励3000元,其他情况不给予奖励,规定普通销售均可参加1次摸奖游戏;中级销售均可参加2次摸奖游戏,金牌销售均可参加3次摸奖游戏(每次摸奖的结果相互独立,奖励叠加)

(ⅰ)求方案一奖励的总金额;

(ⅱ)假设你是企业老板,试通过计算并结合实际说明,你会选择哪种方案奖励销售员.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定一个数列在这个数列里任取项,并且不改变它们在数列中的先后次序,得到的数列称为数列的一个阶子数列

已知数列的通项公式为为常数,等差数列

数列的一个3阶子数列

1的值;

2等差数列的一个 阶子数列,且

为常数,,求证:

3等比数列的一个 阶子数列,

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12如图三棱柱ABC-A1B1C1,CA=CBAB=A A1BA A1=60°.

)证明ABA1C;

)若平面ABC平面AA1B1B,AB=CB直线A1C 与平面BB1C1C所成角正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

1)求椭圆的方程;

2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面为正方形,的中点,为棱上的一点.

1)证明:面

2)当中点时,求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

同步练习册答案