【题目】已知以
为首项的数列
满足:![]()
(1)当
,
时,求数列
的通项公式;
(2)当
,
时,试用
表示数列
前100项的和
;
(3)当
(
是正整数),
,正整数
时,判断数列
,
,
,
是否成等比数列?并说明理由.
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=
AB.
![]()
(1)证明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知原命题是“若
则
”.
(1)试写出原命题的逆命题,否命题,逆否命题,并判断所写命题的真假;
(2)若“
”是“
”的必要不充分条件,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了
个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.
![]()
分组 | 频数 | 频率 |
| 25 | |
| 0.19 | |
| 50 | |
| 0.23 | |
| 0.18 | |
| 5 |
(1)分别求出
,
的值;
(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在
(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
-2为自然对数的底数,
).
(1)若曲线
在点
处的切线与曲线
至多有一个公共点时,求
的取值范围;
(2)当
时,若函数
有两个零点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com