【题目】为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则“课程‘乐’不排在第一周,课程‘御’不排在最后一周”的概率为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
ABCD中,
和
都是等边三角形,平面PAD
平面ABCD,且
,
.
![]()
(1)求证:CD
PA;
(2)E,F分别是棱PA,AD上的点,当平面BEF//平面PCD时,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜率为
的直线交抛物线
于
两点,已知点
的横坐标比点
的横坐标大4,直线
交线段
于点
,交抛物线于点
.
![]()
(1)若点
的横坐标等于0,求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数)。在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的极坐标方程为
。
(1)求直线
的普通方程和圆
的直角坐标方程;
(2)设圆
与直线
交于
,
两点,若点
的坐标为
,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),以
为极点,
轴的非负半轴为极轴建极坐标系,直线
的极坐标方程为![]()
(Ⅰ)求
的极坐标方程;
(Ⅱ)射线
与圆C的交点为
与直线
的交点为
,求
的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列两个命题,命题甲:平面α与平面β相交;命题乙:相交直线l,m都在平面α内,并且都不在平面β内,直线l,m中至少有一条与平面β相交.则甲是乙的( )
A.充分且必要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提升学生“数学建模”的核心素养,某校数学兴趣活动小组指导老师给学生布置了一项探究任务:如图,有一张边长为27cm的等边三角形纸片ABC,从中裁出等边三角形纸片
作为底面,从剩余梯形
中裁出三个全等的矩形作为侧面,围成一个无盖的三棱柱(不计损耗).
![]()
(1)若三棱柱的侧面积等于底面积,求此三棱柱的底面边长;
(2)当三棱柱的底面边长为何值时,三棱柱的体积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数
(其中
)的图象如图所示,为了得到
的图象,则只要将
的图象上所有的点( )
A.向左平移
个单位长度,纵坐标缩短到原来的
,横坐标不变
B.向左平移
个单位长度,纵坐标伸长到原来的3倍横坐标不变
C.向右平移
个单位长度,纵坐标缩短到原来的
,横坐标不变
D.向右平移
个单位长度,纵坐标伸长到原来的3倍,横坐标不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com