精英家教网 > 高中数学 > 题目详情
已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求:当m为何值时
(1)直线平分圆;
(2)直线与圆相切;
(3)直线与圆有两个公共点.
分析:(1)根据题意,由圆的方程找出圆心坐标和圆的半径r,直线平分圆即直线过圆心,所以把圆心坐标代入直线方程中即可求出m的值;
(2)直线与圆相切时,圆心到直线的距离等于半径,所以利用点到直线的距离公式表示出圆心到已知直线的距离d,让d等于圆的半径列出关于m的方程,求出方程的解即可得到符合题意m的值;
(3)直线与圆有两公共点即直线与圆相交,即圆心到直线的距离公式小于圆的半径,所以利用点到直线的距离公式表示出圆心到直线的距离d,让d小于圆的半径列出关于m的不等式,求出不等式的解集即可得到满足题意的m的范围.
解答:解:由圆的方程(x-1)2+(y-1)2=4,得到圆心坐标为(1,1),圆的半径r=2,
(1)当直线平分圆时,即直线过圆的直径,把(1,1)代入y=x+m中,解得m=0;
(2)当直线与圆相切时,圆心(1,1)到直线y=x+m的距离d=
|-m|
2
=r=2,解得m=±2
2

(3)当直线与圆有两个公共点即直线与圆相交时,圆心(1,1)到直线的距离d=
|-m|
2
<r=2,解得:-2
2
≤m≤2
2

所以,当m=0时,直线平分圆;当m=±2
2
时,直线与圆相切;当-2
2
≤m≤2
2
时,直线与圆有两个公共点.
点评:此题考查学生掌握直线与圆相切及相交时所满足的条件,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的方程是(x-2)2+(y+3)2=1,则与圆C关于直线x+y=0对称的圆的方程为
(x-3)2+(y-2)2=1
(x-3)2+(y-2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知点A(1,0),P1、P2、P3是平面直角坐标系上的三点,且|AP1|、|AP2|、|AP3|成等差数列,公差为d,d≠0.
(1)若P1坐标为(1,-1),d=2,点P3在直线3x-y-18=0上时,求点P3的坐标;
(2)已知圆C的方程是(x-3)2+(y-3)2=r2(r>0),过点A的直线交圆于P1、P3两点,P2是圆C上另外一点,求实数d的取值范围;
(3)若P1、P2、P3都在抛物线y2=4x上,点P2的横坐标为3,求证:线段P1P3的垂直平分线与x轴的交点为一定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求:当m为何值时
(1)直线平分圆;
(2)直线与圆相切;
(3)直线与圆有两个公共点.

查看答案和解析>>

科目:高中数学 来源:2013年上海市静安、杨浦、青浦、宝山区高考数学二模试卷(理科)(解析版) 题型:解答题

已知点A(1,0),P1、P2、P3是平面直角坐标系上的三点,且|AP1|、|AP2|、|AP3|成等差数列,公差为d,d≠0.
(1)若P1坐标为(1,-1),d=2,点P3在直线3x-y-18=0上时,求点P3的坐标;
(2)已知圆C的方程是(x-3)2+(y-3)2=r2(r>0),过点A的直线交圆于P1、P3两点,P2是圆C上另外一点,求实数d的取值范围;
(3)若P1、P2、P3都在抛物线y2=4x上,点P2的横坐标为3,求证:线段P1P3的垂直平分线与x轴的交点为一定点,并求该定点的坐标.

查看答案和解析>>

同步练习册答案