精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线的参数方程为t为参数),,点A为直线与曲线C在第二象限的交点,过O点的直线与直线互相垂直,点B为直线与曲线C在第三象限的交点.

1)写出曲线C的直角坐标方程及直线的普通方程;

2)若,求的面积.

【答案】1.);(2.

【解析】

1)根据得出曲线C的直角坐标方程,消掉参数得出直线的普通方程;

2)根据极坐标中极径的意义以及三角形的面积公式,即可得出的面积.

1)曲线C的极坐标方程化为

曲线C的直角坐标方程为.

直线的普通方程为.

2)射线的极坐标方程为,(),则

射线的极坐标方程为,(),则

,解得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正四面体PABC的棱长均为aO为正四面体PABC的外接球的球心,过点O作平行于底面ABC的平面截正四面体PABC,得到三棱锥PA1B1C1和三棱台ABCA1B1C1,那么三棱锥PA1B1C1的外接球的表面积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若函数有两个零点,求的取值范围;

2)证明:当时,对任意满足的正实数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元).这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y(单位:十亿元),绘制如表:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

编号x

1

2

3

4

5

6

7

8

9

10

销售额y

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根据以上数据绘制散点图,如图所示

1)根据散点图判断,哪一个适宜作为销售额关于的回归方程类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果及如表中的数据,建立关于的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)

3)把销售超过100(十亿元)的年份叫畅销年,把销售额超过200(十亿元)的年份叫狂欢年,从2010年到2019年这十年的畅销年中任取2个,求至少取到一个狂欢年的概率.

参考数据:

参考公式:

对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆过点是两个焦点.以椭圆的上顶点为圆心作半径为的圆,

1)求椭圆的方程;

2)存在过原点的直线,与圆分别交于两点,与椭圆分别交于两点(点在线段上),使得,求圆半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数,.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的圾坐标方,且直线l与曲线C相交于AB两点.

1)求曲线C的普通方程和l的直角坐标方程;

2)若,点满足,求此时r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:

改造前:1931222634152225403518162823341526202421

改造后:3229411826334234373933224235432741373836

1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?

超过30

不超过30

改造前

改造后

2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(120天计)内的维护方案:T=30k=1234.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际上通常用年龄中位数指标作为划分国家或地区人口年龄构成的标准:年龄中位数在20岁以下为年轻型人口;年龄中位数在2030岁为成年型人口;年龄中位数在30岁以上为老龄型人口.

如图反映了我国全面放开二孩政策对我国人口年龄中位数的影响.据此,对我国人口年龄构成的类型做出如下判断:①建国以来直至2000年为成年型人口;②从2010年至2020年为老龄型人口;③放开二孩政策之后我国仍为老龄型人口.其中正确的是(

A.②③B.①③C.D.①②

查看答案和解析>>

同步练习册答案