【题目】选修4-1《几何证明选讲》
已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
![]()
(1)求证:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的长.
【答案】(1) 详见解析(2)3
【解析】
试题分析:(1)证明BD平分∠ABC实质就是求角相等:由弦切角定理得CDE=DBC ,由平行得CDE=DCA ,由同弧对等角得DBA=DCA ,三者结合得DBA=DBC (2)求线段长,一般利用相似三角形得比例关系:由ABH∽DBC,得
,而由等角转化为等弦:由DBA=DBC 得AD=DC,
,解得AH=3
试题解析:证明:(1)∵AC∥DE,∴CDE=DCA,又∵DBA=DCA,∴CDE=DBA
∵直线DE为圆O的切线,∴CDE=DBC
故DBA=DBC,即BD平分∠ABC
(2)∵CAB=CDB,且DBA=DBC,∴ABH∽DBC,∴![]()
又EDC=DAC=DCA,∴AD=DC
∴
, ∵AB=4,AD=6,BD=8∴AH=3
科目:高中数学 来源: 题型:
【题目】已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个是该数列中的一项。现给出以下四个结论:
①数列0,1,3具有性质P;
②数列0,2,4,6具有性质P;
③若数列A具有性质P,则a1=0;
④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2。
其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn},Sn为数列{an}的前n项和,向量
=(1,bn),
=(an-1,Sn),
//
.
(1)若bn=2,求数列{an}通项公式;
(2)若
,
=0.
①证明:数列{an}为等差数列;
②设数列{cn}满足
,问是否存在正整数l,m(l<m,且l≠2,m≠2),使得
成等比数列,若存在,求出l、m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).
(1)若x=
,求向量a,c的夹角;
(2)当x∈
时,求函数f(x)=2a·b+1的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com