【题目】若直线
与直线2x+3y﹣6=0的交点位于第一象限,则直线l的倾斜角的取值范围( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】B
【解析】解:联立两直线方程得:
, 将①代入②得:x=
③,把③代入①,求得y=
,
所以两直线的交点坐标为(
,
),
因为两直线的交点在第一象限,所以得到
,
由①解得:k>﹣
;由②解得k>
或k<﹣
,所以不等式的解集为:k>
,
设直线l的倾斜角为θ,则tanθ>
,所以θ∈(
,
).
方法二、∵直线l恒过定点(0,﹣
),作出两直线的图象.,
设直线2x+3y﹣6=0与x轴交于点A,与y轴交于点B.从图中看出,
斜率kAP<k<+∞,即
<k<+∞,
故直线l的倾斜角的取值范围应为(
,
).
故选B.
联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,根据交点在第一象限得到横纵坐标都大于0,联立得到关于k的不等式组,求出不等式组的解集即可得到k的范围,然后根据直线的倾斜角的正切值等于斜率k,根据正切函数图象得到倾斜角的范围.
科目:高中数学 来源: 题型:
【题目】已知曲线
(t为参数),
(θ为参数),
(1)化C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为
,Q为C2上的动点,求PQ中点M到直线
(t为参数)距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,我国电子商务蓬勃发展. 2016年“618”期间,某网购平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对该网购平台的商品和服务的评价系统. 从该评价系统中选出200次成功交易,并对其评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为80次.
(Ⅰ) 根据已知条件完成下面的
列联表,并回答能否有99%的把握认为“网购者对商品满意与对服务满意之间有关系”?
对服务满意 | 对服务不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(Ⅱ) 若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为随机变量
,求
的分布列和数学期望
.
附:![]()
(其中
为样本容量)
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知BC边上的高所在直线的方程为x﹣2y+1=0,∠A平分线所在直线的方程为y=0,若点B的坐标为(1,2), (Ⅰ)求直线BC的方程;
(Ⅱ)求点C的坐标.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn . 若对任意正整数n,总存在正整数m,使得Sn=am , 则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:
①弩马第九日走了九十三里路;
②良马前五日共走了一千零九十五里路;
③良马和弩马相遇时,良马走了二十一日.
则以上说法错误的个数是( )个
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为
,且成绩分布在
,分数在
以上(含
)的同学获奖. 按文理科用分层抽样的方法抽取
人的成绩作为样本,得到成绩的频率分布直方图(见下图).
(1)填写下面的
列联表,能否有超过
的把握认为“获奖与学生的文理科有关”?
(2)将上述调査所得的频率视为概率,现从参赛学生中,任意抽取
名学生,记“获奖”学生人数为
,求
的分布列及数学期望.
文科生 | 理科生 | 合计 | |
获奖 |
| ||
不获奖 | |||
合计 |
|
![]()
附表及公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com