【题目】已知椭圆
:
的离心率为
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)过点
的直线与椭圆
交于
,
两点,在直线
上存在点
,使三角形
为正三角形,求
的最大值.
【答案】(1)
;(2)
.
【解析】
(1)由离心率得
,再把已知点的坐标代入椭圆方程,结合
可解得
,得椭圆方程;
(2)设直线
方程为
,与
联立方程组,消去
,设
,
,由韦达定理得![]()
.设线段
的中点为
,得直线
方程,求出
点坐标(此结论对
也适用),
是等边三角形等价于
,由此可把
用
表示,设
换元后,可利用基本不等式求得最值.
(1)设
,则
,
,所以
,
,
由点
在椭圆
上得
,
,
,所以椭圆
的方程为
.
(2)显然,直线
的斜率存在,设其方程为
,
与
联立方程组,消去
,并化简得
.
设
,
,则
,
.
设线段
的中点为
,则直线
:
,令
,
又
,得点
的坐标为
,显然当
时也符合,
所以
.
又因为
,
由三角形
为正三角形得
,
所以
两边平方可得
,得
.
令
,则
,当且仅当
,即
时等号成立,此时
,所以
的最大值为
.
科目:高中数学 来源: 题型:
【题目】已知如图一
,
,
,
,
分别为
,
的中点,
在
上,且
,
为
中点,将
沿
折起,
沿
折起,使得
,
重合于一点(如图二),设为
.
![]()
(1)求证:
平面
;
(2)求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小学一班级1999级同学举行20周年聚会,该班共来了12位同学,其中女同学6位,聚会过程中有一个游戏环节,在游戏环节中,需要随机从中选出2位同学代表,进行男女搭配完成该项游戏,因此,每次选出的2位同学是一男一女,才算“有效选择”;否则视为“无效选择”,继续下一次选择,直到成为“有效选择”为止.
(1)求第一次随机选出的2位同学是“有效选择”的概率;
(2)设第一次选出的2位同学代表中女同学人数为
,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了有效地加强高中生自主管理能力,推出了一系列措施,其中自习课时间的自主管理作为重点项目,学校有关处室制定了“高中生自习课时间自主管理方案”.现准备对该“方案”进行调查,并根据调查结果决定是否启用该“方案”,调查人员分别在各个年级随机抽取若干学生对该“方案”进行评分,并将评分分成
,
,
,
七组,绘制成如图所示的频率分布直方图.
![]()
相关规则为①采用百分制评分,
内认定为对该“方案”满意,不低于80分认定为对该“方案”非常满意,60分以下认定为对该“方案”不满意;②学生对“方案”的满意率不低于
即可启用该“方案”;③用样本的频率代替概率.
(1)从该校学生中随机抽取1人,求被抽取的这位同学非常满意该“方案”的概率,并根据频率分布直方图求学生对该“方案”评分的中位数.
(2)根据所学统计知识,判断该校是否启用该“方案”,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在
省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的
指标
和
指标
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
(1)试求
与
间的相关系数
,并说明
与
是否具有较强的线性相关关系(若
,则认为
与
具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立
关于
的回归方程,并预测当
指标为7时,
指标的估计值.
(3)若某城市的共享单车
指标
在区间
的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至
指标
在区间
内现已知
省某城市共享单车的
指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线
中斜率和截距的最小二乘估计分别为
,,
相关系数![]()
参考数据:
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com