【题目】已知抛物线
的顶点为原点,其焦点
到直线
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(1) 求抛物线
的方程;
(2) 当点
为直线
上的定点时,求直线
的方程;
(3) 当点
在直线
上移动时,求
的最小值.
【答案】(Ⅰ)
(Ⅱ)
(Ⅲ) ![]()
【解析】试题分析:(1)设拋物线
的方程为
,利用点到直线的距离,求出
,得到抛物线方程;(2)对抛物线方程求导,求出切线
的斜率,用点斜式写出切线方程,化成一般式,找出共同点,得到直线
的方程;(3)由拋物线定义可知
,联立直线与抛物线方程,消去
,得到一个关于
的一元二次方程,由韦达定理求得
的值,还有
,将
表示成
的二次函数的形式,再求出最值.
试题解析: 解:(1)依题意,设拋物线
的方程为
,由
结合
,
解得
,所以拋物线
的方程为
.
(2)拋物线
的方程为
,即
,求导得
,
设
(其中
)则切线
的斜率分别为
,
所以切线
的方程为
,即
,即
,
同理可得切线
的方程为
,
因为切线
均过点
,所以
,
,
所以
为方程
的两组解,
所以直线
的方程为
.
(3)由拋物线定义可知
,
联立方程
,消去
整理得
.
由一元二次方程根与系数的关系可得
,
所以![]()
又点
在直线
上,所以
,
所以
,
所以当
时,
取得最小值,且取得最小值为
.
科目:高中数学 来源: 题型:
【题目】汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.设d表示停车距离,
表示反应距离,
表示制动距离,则
.下图是根据美国公路局公布的试验数据制作的停车距离示意图,对应的汽车行驶的速度与停车距离的表格如下图所示
![]()
序号 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型一:
或模型二:
(其中v为汽车速度,a,b
(2)通过计算
时的停车距离,分析选择哪一个函数模型的拟合效果更好.
(参考数据:
;
;
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的
五种商品有购买意向.已知该网民购买
两种商品的概率均为
,购买
两种商品的概率均为
,购买
种商品的概率为
.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量
表示该网民购买商品的种数,求
的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
![]()
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占![]()
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
上一动点
,过点
作
轴,垂足为
点,
中点为
.
(1)当
在圆
上运动时,求点
的轨迹
的方程;
(Ⅱ)过点
的直线
与
交于
两点,当
时,求线段
的垂直平分线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com