精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+ax在(0,1)上是增函数.
(1)求实数a的取值范围A;
(2)当a为A中最小值时,定义数列{an}满足:a1=b∈(0,1),且2an+1=f(an),试比较an与an+1的大小.
(1)∵f(x)=-x3+ax,
∴f′(x)=-3x2+a,
∵f(x)=-x3+ax在(0,1)上是增函数,
∴f′(1)=-3+a≥0,
∴a≥3,即A=[3,+∞).
(2)当a=3时,由题意:an+1=
1
2
f(an)=-
1
2
an3+
3
2
an,且a1=b∈(0,1),
以下用数学归纳法证明:an∈(0,1),对n∈N*恒成立.
①当n=1时,a1=b∈(0,1)成立;
②假设n=k时,ak∈(0,1)成立,那么当n=k+1时,
ak+1=-
1
2
ak3+
3
2
ak,由①知g(x)=(-x3+3x)在(0,1)上单调递增,
∴g(0)<g(ak)<g(1)
即0<ak+1<1,
 由①②知对一切n∈N*都有an∈(0,1)
 而an+1-an=-
1
2
an3+
3
2
an-an=
1
2
an(1-an2)>0
∴an+1>an
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案