如图,四棱锥
的底面是正方形,
⊥平面
,![]()
![]()
(1)求证:
;
(2)求二面角
的大小.
(1)证明见解析;(2)
.
【解析】
试题分析:(1)要证线线垂直,一般通过证明线面垂直来实现,那么我们就要寻找图形中已有哪些与待证线垂直的直线,本题中首先由已知有
,又有
平面
,则
,故可证明
与过
的平面
垂直,从而得线线垂直;(2)要求二面角的大小,一般须根据定义作出二面角的平面角,在三角形中解出,而平面角就是要与二面角的棱垂直的直线(射线),题中棱是
,在两个面(半平面)内与
垂直的直线是哪个呢?注意到已知
,因此有
,从而
与
都是以
为底边的等腰三角形,故垂直关系就是取底边
中点
,根据等腰三角形的性质有
,
,
就是我们要找的平面角.
试题解析:(1)连接BD,∵
⊥平面![]()
平面![]()
∴AC⊥SD 4分
又四边形ABCD是正方形,∴AC⊥BD
∴AC ⊥平面SBD
∴AC⊥SB. 6分
![]()
(2)设
的中点为
,连接
、
,
∵SD=AD,CS=CA,
∴DE⊥SA, CE⊥SA.
∴
是二面角
的平面角. 9分
计算得:DE=
,CE=
,CD=2,则CD⊥DE.
, ![]()
所以所求二面角的大小为
. 12分
考点:(1)线线垂直;(2)二面角.
科目:高中数学 来源: 题型:
(09年山东实验中学诊断三理)(13分)如图:四棱锥
的底面
是提醒,腰
,
平分
且与
垂直,侧面
都垂直于底面,平面
与底面
成60°角
(1)求证:
;
(2)求二面角
的大小![]()
![]()
![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三第八次月考文科数学试卷 题型:解答题
如图,四棱锥
的底面是平行四边形,
平面
,
,
,
点
是
上的点,且
.
(Ⅰ)求证:
;
(Ⅱ)求
的值,使
平面
;
(Ⅲ)当
时,求三棱锥
与四棱锥
的体积之比.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三上学期摸底理科数学 题型:解答题
((本小题满分14分)如图,四棱锥
的底面
是正方形,侧棱![]()
底面
,
,
、
分别是棱
、
的中点.
(1)求证:
; (2) 求直线
与平面
所成的角的正切值
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题
(本小题满分12 分)
如图,四棱锥
的底面是边长为
的菱形,
,
平面
,
,
为
的中点,O为底面对角线的交点;
(1)求证:平面
平面
;
(2)求二面角
的正切值。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com